版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年陜西省渭南三賢中學高三壓軸卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為虛數單位,則的虛部為()A. B. C. D.2.已知復數滿足,則的共軛復數是()A. B. C. D.3.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.54.已知為虛數單位,實數滿足,則()A.1 B. C. D.5.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.6.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.57.當輸入的實數時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.8.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.9.設全集U=R,集合,則()A. B. C. D.10.已知,則()A. B. C. D.11.設是虛數單位,,,則()A. B. C.1 D.212.第24屆冬奧會將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內隨機取N個點,經統(tǒng)計落入五環(huán)內部及其邊界上的點數為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(為虛數單位),則的模為____.14.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.15.設常數,如果的二項展開式中項的系數為-80,那么______.16.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數據:;;)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)當時,求不等式的解集;(2)若函數的圖象與軸恰好圍成一個直角三角形,求的值.18.(12分)在直角坐標系x0y中,把曲線α為參數)上每個點的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到曲線以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程(1)寫出的普通方程和的直角坐標方程;(2)設點M在上,點N在上,求|MN|的最小值以及此時M的直角坐標.19.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大?。?0.(12分)某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100人的體重數據,得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.(1)估計這100人體重數據的平均值和樣本方差;(結果取整數,同一組中的數據用該組區(qū)間的中點值作代表)(2)從全校學生中隨機抽取3名學生,記為體重在的人數,求的分布列和數學期望;(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.21.(12分)在中,內角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當的面積取得最大值時,求AD的長.22.(10分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.2、B【解析】
根據復數的除法運算法則和共軛復數的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數的除法的運算法則,考查了復數的共軛復數的定義,屬于基礎題.3、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.4、D【解析】,則故選D.5、B【解析】
函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.6、A【解析】
根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.7、A【解析】
根據循環(huán)結構的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結論.【詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點睛】本題考查循環(huán)結構輸出結果、幾何概型的概率,模擬程序運行是解題的關鍵,屬于基礎題.8、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數.9、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.10、B【解析】
利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.11、C【解析】
由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.12、B【解析】
根據比例關系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,所以.14、【解析】
根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.15、【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據二項式展開式的系數求參數,屬于基礎題.16、【解析】
根據空間位置關系,將平面旋轉后使得各點在同一平面內,結合角的關系即可求得兩點間距離的三角函數表達式.根據所給參考數據即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和.將平面繞旋轉至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉至與平面共面的位置,將繞旋轉至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.【點睛】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內求解的方法,三角函數誘導公式的應用,綜合性強,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)當時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數的圖象與軸恰好圍成一個直角三角形,所以,解得,當時,,函數的圖象與軸沒有交點,不符合題意;當時,,函數的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.18、(1)的普通方程為,的直角坐標方程為.(2)最小值為,此時【解析】
(1)由的參數方程消去求得的普通方程,利用極坐標和直角坐標轉化公式,求得的直角坐標方程.(2)設出點的坐標,利用點到直線的距離公式求得最小值的表達式,結合三角函數的指數求得的最小值以及此時點的坐標.【詳解】(1)由題意知的參數方程為(為參數)所以的普通方程為.由得,所以的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離,因為.當且僅當時,取得最小值為,此時的直角坐標為即.【點睛】本小題主要考查參數方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用曲線參數方程求解點到直線距離的最小值問題,屬于中檔題.19、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結PD,由題意可得,則AB⊥平面PDE,;(2)法一:結合幾何關系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標系,計算可得平面PBE的法向量.平面PAB的法向量為.據此計算可得二面角的大小為.試題解析:(1)連結PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點建立空間直角坐標系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設二面角的大小為,由圖知,,所以即二面角的大小為.20、(1)60;25(2)見解析,2.1(3)可以認為該校學生的體重是正常的.見解析【解析】
(1)根據頻率分布直方圖可求出平均值和樣本方差;(2)由題意知服從二項分布,分別求出,,,,進而可求出分布列以及數學期望;(3)由第一問可知服從正態(tài)分布,繼而可求出的值,從而可判斷.【詳解】解:(1)(2)由已知可得從全校學生中隨機抽取1人,體重在的概率為0.7.隨機拍取3人,相當于3次獨立重復實驗,隨機交量服從二項分布,則,,,,所以的分布列為:01230.0270.1890.4410.343數學期望(3)由題意知服從正態(tài)分布,則,所以可以認為該校學生的體重是正常的.【點睛】本題考查了由頻率分布直方圖求進行數據估計,考查了二項分布,考查了正態(tài)分布.注意,統(tǒng)計類問題,如果題目中沒有特殊說明,則求出數據的精度和題目中數據的小數后位數相同.21、(1);(2).【解析】
(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.22、橫線處任填一個都可以,面積為.【解析】
無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度礦業(yè)權抵押擔保項目合同樣本3篇
- 2024經七路施工項目廉潔保障合同版B版
- 二零二五年度廠房裝修安全風險評估合同3篇
- 2025年度高校文印服務外包合同3篇
- 二零二五年度園林景觀裝修合同范本2篇
- 2024版影視融資中介協(xié)議模板版B版
- 簡易勞務派遣合同范本
- 二零二五年度icp許可證辦理與互聯(lián)網企業(yè)合規(guī)性審查與法律支持合同3篇
- 二零二五版二手車按揭轉讓合同范本3篇
- 二零二五版建筑材料租賃與合同變更合同3篇
- 人教版(2025新版)七年級下冊英語:寒假課內預習重點知識默寫練習
- 【公開課】同一直線上二力的合成+課件+2024-2025學年+人教版(2024)初中物理八年級下冊+
- 高職組全國職業(yè)院校技能大賽(嬰幼兒照護賽項)備賽試題庫(含答案)
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- NB-T 47013.15-2021 承壓設備無損檢測 第15部分:相控陣超聲檢測
- SJG 05-2020 基坑支護技術標準-高清現(xiàn)行
- 汽車維修價格表
- 司爐崗位應急處置卡(燃氣)參考
- 10KV供配電工程施工組織設計
- 終端攔截攻略
- 藥物外滲處理及預防【病房護士安全警示教育培訓課件】--ppt課件
評論
0/150
提交評論