2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷含解析_第1頁
2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷含解析_第2頁
2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷含解析_第3頁
2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷含解析_第4頁
2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省蘇州新區(qū)實驗中學高考仿真模擬數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則2.將函數(shù)的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.3.已知向量,,設函數(shù),則下列關于函數(shù)的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)4.已知函數(shù).若存在實數(shù),且,使得,則實數(shù)a的取值范圍為()A. B. C. D.5.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種6.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.7.下圖是我國第24~30屆奧運獎牌數(shù)的回眸和中國代表團獎牌總數(shù)統(tǒng)計圖,根據(jù)表和統(tǒng)計圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團的奧運獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實際意義C.第30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)的中位數(shù)是54.58.已知函數(shù)且,則實數(shù)的取值范圍是()A. B. C. D.9.已知隨機變量的分布列是則()A. B. C. D.10.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.11.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.12.已知函數(shù),,的零點分別為,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系xOy中,已知A0,a,B3,a+414.已知,則_____15.函數(shù)的極大值為________.16.函數(shù)滿足,當時,,若函數(shù)在上有1515個零點,則實數(shù)的范圍為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知定點,,直線、相交于點,且它們的斜率之積為,記動點的軌跡為曲線。(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,是否存在定點,使得直線與斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。18.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側;(2)設線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率19.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.20.(12分)在直角坐標系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.21.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.22.(10分)已知,(其中).(1)求;(2)求證:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.2、D【解析】

由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導公式及正余弦函數(shù)的性質;熟練掌握誘導公式和正余弦函數(shù)的性質是求解本題的關鍵;屬于中檔題、常考題型.3、D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.4、D【解析】

首先對函數(shù)求導,利用導數(shù)的符號分析函數(shù)的單調(diào)性和函數(shù)的極值,根據(jù)題意,列出參數(shù)所滿足的不等關系,求得結果.【詳解】,令,得,.其單調(diào)性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關根據(jù)函數(shù)值的關系求參數(shù)的取值范圍的問題,涉及到的知識點有利用導數(shù)研究函數(shù)的單調(diào)性與極值,畫出圖象數(shù)形結合,屬于較難題目.5、B【解析】

把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎題.6、B【解析】

先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.7、B【解析】

根據(jù)表格和折線統(tǒng)計圖逐一判斷即可.【詳解】A.中國代表團的奧運獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運會相比,奧運金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計圖中前六屆奧運會中國代表團的奧運獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點睛】此題考查統(tǒng)計圖,關鍵點讀懂折線圖,屬于簡單題目.8、B【解析】

構造函數(shù),判斷出的單調(diào)性和奇偶性,由此求得不等式的解集.【詳解】構造函數(shù),由解得,所以的定義域為,且,所以為奇函數(shù),而,所以在定義域上為增函數(shù),且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數(shù)的單調(diào)性和奇偶性解不等式,屬于中檔題.9、C【解析】

利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.10、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.11、D【解析】

通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.12、C【解析】

轉化函數(shù),,的零點為與,,的交點,數(shù)形結合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結合法研究函數(shù)的零點,考查了學生轉化劃歸,數(shù)形結合的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(-53,【解析】

求出AB的長度,直線方程,結合△ABC的面積為5,轉化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉化為圓心到直線的距離是解決本題的關鍵.14、【解析】

化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數(shù)的性質的應用,屬于基礎題.15、【解析】

對函數(shù)求導,根據(jù)函數(shù)單調(diào)性,即可容易求得函數(shù)的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數(shù)有極大值.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.16、【解析】

由已知,在上有3個根,分,,,四種情況討論的單調(diào)性、最值即可得到答案.【詳解】由已知,的周期為4,且至多在上有4個根,而含505個周期,所以在上有3個根,設,,易知在上單調(diào)遞減,在,上單調(diào)遞增,又,.若時,在上無根,在必有3個根,則,即,此時;若時,在上有1個根,注意到,此時在不可能有2個根,故不滿足;若時,要使在有2個根,只需,解得;若時,在上單調(diào)遞增,最多只有1個零點,不滿足題意;綜上,實數(shù)的范圍為.故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,涉及到函數(shù)的周期性、分類討論函數(shù)的零點,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在定點,見解析【解析】

(1)設動點,則,利用,求出曲線的方程.(2)由已知直線過點,設的方程為,則聯(lián)立方程組,消去得,設,,,利用韋達定理求解直線的斜率,然后求解指向性方程,推出結果.【詳解】解:(1)設動點,則,,,即,化簡得:。由已知,故曲線的方程為。(2)由已知直線過點,設的方程為,則聯(lián)立方程組,消去得,設,,則又直線與斜率分別為,,則。當時,,;當時,,。所以存在定點,使得直線與斜率之積為定值?!军c睛】本題考查軌跡方程的求法,直線與橢圓的位置關系的綜合應用,考查計算能力,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)設出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關系求出點的橫坐標即可證出;(2)根據(jù)線段的垂直平分線求出點的坐標,即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設,,聯(lián)立消去,得,顯然,,則點的橫坐標,因為,所以點在軸的右側.(2)由(1)得點的縱坐標.即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關系的應用、根與系數(shù)的關系應用,以及三角形的面積的計算,意在考查學生的數(shù)學運算能力,屬于中檔題.19、【解析】

先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.20、(1)(2)5【解析】

(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標方程;(2)將直線的參數(shù)方程代入曲線的直角坐標方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設,,由直線的參數(shù)方程參數(shù)的幾何意義得:【點睛】本題考查參數(shù)方程、極坐標方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應用,屬于中檔題.21、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論