江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題含解析_第1頁
江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題含解析_第2頁
江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題含解析_第3頁
江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題含解析_第4頁
江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鎮(zhèn)江市實驗初級中學2024年數學八年級下冊期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.點P(-2,3)關于y軸的對稱點的坐標是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)2.若,則變形正確的是()A. B. C. D.3.在中,,則的度數為()A. B. C. D.4.如圖,在中,下列結論錯誤的是()A. B. C. D.5.如圖:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD=()A.4 B.3C.2 D.16.如圖,在矩形OABC中,點B的坐標是(1,3),則AC的長是()A.3 B.2 C. D.47.某新品種葡萄試驗基地種植了10畝新品種葡萄,為了解這些新品種葡萄的單株產量,從中隨機抽查了4株葡萄,在這個統(tǒng)計工作中,4株葡萄的產量是()A.總體B.總體中的一個樣本C.樣本容量D.個體8.如圖,在△ABC中,∠ACB=90°,CE⊥AB,垂足為E,點D是邊AB的中點,AB=20,S△CAD=30,則DE的長度是()A.6 B.8 C. D.99.如果下列各組數是三角形的三邊長,那么能組成直角三角形的一組數是()A.,, B.,, C.,, D.,,10.若,則下列不等式成立的是()A. B. C. D.11.一個多邊形的每個內角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形12.如圖,正方形的邊長為4,點是對角線的中點,點、分別在、邊上運動,且保持,連接,,.在此運動過程中,下列結論:①;②;③四邊形的面積保持不變;④當時,,其中正確的結論是()A.①② B.②③ C.①②④ D.①②③④二、填空題(每題4分,共24分)13.已知四邊形是矩形,點是邊的中點,以直線為對稱軸將翻折至,聯(lián)結,那么圖中與相等的角的個數為_____________14.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數關系如圖所示.下列結論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達C地時,兩車相距40km.其中正確的是______(填寫所有正確結論的序號).15.如圖,以Rt△ABC的斜邊AB為一邊在△ABC同側作正方形ABEF.點O為AE與BF的交點,連接CO.若CA=2,CO=,那么CB的長為________.16.若整數m滿足,且,則m的值為___________.17.﹣﹣×+=.18.函數的自變量的最大值是______.三、解答題(共78分)19.(8分)解方程:(1);(2)20.(8分)因式分解:__________.21.(8分)為了迎接“五·一”小長假的購物高峰,某運動品牌服裝專賣店準備購進甲、乙兩種服裝,甲種服裝每件進價180元,售價320元;乙種服裝每件進價150元,售價280元.(1)若該專賣店同時購進甲、乙兩種服裝共200件,恰好用去32400元,求購進甲、乙兩種服裝各多少件?(2)該專賣店為使甲、乙兩種服裝共200件的總利潤(利潤=售價一進價)不少于26700元,且不超過26800元,則該專賣店有幾種進貨方案?(3)在(2)的條件下,專賣店準備在5月1日當天對甲種服裝進行優(yōu)惠促銷活動,決定對甲種服裝每件優(yōu)惠a(0<a<20)元出售,乙種服裝價格不變.那么該專賣店要獲得最大利潤應如何進貨?22.(10分)如圖,一次函數y=kx+b的圖象經過點A(8,0),直線y=-3x+6與x軸交于點B,與y軸交于點D,且兩直線交于點C(4,m).(1)求m的值及一次函數的解析式;(2)求△ACD的面積.23.(10分)操作:將一把三角尺放在如圖①的正方形中,使它的直角頂點在對角線上滑動,直角的一邊始終經過點,另一邊與射線相交于點,探究:(1)如圖②,當點在上時,求證:.(2)如圖③,當點在延長線上時,①中的結論還成立嗎?簡要說明理由.24.(10分)在矩形中,,,將沿著對角線對折得到.(1)如圖,交于點,于點,求的長.(2)如圖,再將沿著對角線對折得到,順次連接、、、,求:四邊形的面積.25.(12分)如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長交BC于點G,連接AG.(1)求證:△ABG≌△AFG;(2)求BG的長.26.為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數量x(棵)之間存在如圖所示的函數關系.(1)求y與x的函數關系式;(2)若在購買計劃中,B種苗的數量不超過35棵,但不少于A種苗的數量,請設計購買方案,使總費用最低,并求出最低費用.

參考答案一、選擇題(每題4分,共48分)1、A【解析】

根據“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數”解答.【詳解】點P(?2,3)關于y軸的對稱點的坐標為(2,3).故選:A.【點睛】本題考查了關于x軸、y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.2、D【解析】

根據不等式的性質即可判斷.【詳解】若,則x+2<y+2,故A錯誤;<,故B錯誤;x-2<y-2,故C錯誤;,故D正確;故選D.【點睛】此題主要考查不等式的性質,解題的關鍵是熟知不等式的性質及應用.3、D【解析】

由四邊形ABCD是平行四邊形,根據平行四邊形的對角相等,易得∠C=∠A=38°.【詳解】解:∵四邊形ABCD是平行四邊形,

∴∠C=∠A=38°.

故選:D.【點睛】此題考查了平行四邊形的性質:平行四邊形的對角相等.4、D【解析】

根據平行四邊形的對邊平行和平行線的性質即可一一判斷.【詳解】∵四邊形ABCD是平行四邊形,

∴AB=CD,∠BAD=∠BCD,(平行四邊形的對邊相等,對角相等)故B、C正確.

∵四邊形ABCD是平行四邊形,

∴AB∥BC,

∠1=∠2,故A正確,

故只有∠1=∠3錯誤,

故選:D.【點睛】此題考查平行四邊形的性質,解題關鍵在于掌握平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對邊平行.5、C【解析】

作PE⊥OB于E,根據角平分線的性質可得PE=PD,根據平行線的性質可得∠BCP=∠AOB=30°,由直角三角形中30°的角所對的直角邊等于斜邊的一半,可求得PE,即可求得PD.【詳解】作PE⊥OB于E,

∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,

∴PE=PD,

∵PC∥OA,

∴∠BCP=∠AOB=2∠BOP=30°

∴在Rt△PCE中,PE=12PC=12×4=2,

故選【點睛】本題考查角平分線的性質、含30度角的直角三角形和三角形的外角性質,解題的關鍵是掌握角平分線的性質、含30度角的直角三角形和三角形的外角性質.6、C【解析】

根據勾股定理求出OB,根據矩形的性質得出AC=OB,即可得出答案.【詳解】解:連接OB,過B作BM⊥x軸于M,∵點B的坐標是(1,3),∴OM=1,BM=3,由勾股定理得:OB=∵四邊形OABC是矩形,∴AC=OB,∴AC=,故選:C.【點睛】本題考查了點的坐標、矩形的性質、勾股定理等知識點,能根據矩形的性質得出AC=OB是解此題的關鍵.7、B【解析】試題解析:首先找出考查的對象.從而找出總體、個體.再根據被收集數據的這一部分對象找出樣本,最后再根據樣本確定出樣本容量.4株葡萄的產量是樣本.故選B.8、B【解析】

根據直角三角形斜邊中線的性質求得CD,根據三角形面積求得CE,然后根據勾股定理即可求得DE.【詳解】解:∵在△ABC中,∠ACB=90°,點D是邊AB的中點,AB=20,

∴CD=AD=BD=10,

∵S△CAD=30,CE⊥AB,垂足為E,

∴S△CAD=AD?CE=30

∴CE=6,

∴DE=故選B.【點睛】本題考查了直角三角形斜邊的中線等于斜邊的一半,解題的關鍵是掌握這個性質的運用.9、C【解析】

先求出兩小邊的平方和,再求出大邊的平方,看看是否相等即可.【詳解】解:A、62+72≠82,所以以6,7,8為邊的三角形不是直角三角形,故本選項不符合題意;

B、52+62≠82,所以以5,6,8為邊的三角形不是直角三角形,故本選項不符合題意;

C、42+52=()2,所以以,4,5為邊的三角形是直角三角形,故本選項符合題意;

D、42+52≠62,所以以4,5,6為邊的三角形不是直角三角形,故本選項不符合題意;

故選:C.【點睛】本題考查了勾股定理的逆定理,能熟記勾股定理的逆定理的內容是解此題的關鍵.10、A【解析】

根據不等式的基本性質逐一判斷即可.【詳解】A.將已知不等式的兩邊同時加上5,得,故本選項符合題意;B.將已知不等式的兩邊同時乘,得,故本選項不符合題意;C.將已知不等式的兩邊同時乘,得,故本選項不符合題意;D.不能得出,故本選項不符合題意.故選A.【點睛】此題考查的是不等式的變形,掌握不等式的基本性質是解決此題的關鍵.11、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.12、D【解析】

過O作于G,于,由正方形的性質得到,求得,,得到,根據全等三角形的性質得到,故①正確;,推出,故②正確;得到四邊形的面積正方形的面積,四邊形的面積保持不變;故③正確;根據平行線的性質得到,,求得,得到,于是得到,故④正確.【詳解】解:過O作于G,于H,∵四邊形是正方形,,,,∵點O是對角線BD的中點,,,,,,,,∴四邊形是正方形,,,,在與中,,,,故①正確;,,,故②正確;,∴四邊形的面積正方形的面積,∴四邊形的面積保持不變;故③正確;,,,,,,,,故④正確;故選:.【點睛】本題考查了正方形的性質,全等三角形的判定和性質,平行線的性質,熟練掌握正方形的性質是解題的關鍵.二、填空題(每題4分,共24分)13、4【解析】

由折疊的性質和等腰三角形的性質可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行線的性質,可得∠AEB=∠CBE,進而得出結論.【詳解】由折疊知,∠BEF=∠AEB,AE=FE,∵點E是AD中點,∴AE=DE,∴ED=FE,∴∠FDE=∠EFD,∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF∴∠AEB=∠EDF,∵AD∥BC,∴∠AEB=∠CBE,∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,故答案為:4【點睛】本題屬于折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.解決問題的關鍵是由等腰三角形的性質得出∠EDF=∠AEB.14、②③④.【解析】解:①觀察函數圖象可知,當t=2時,兩函數圖象相交,∵C地位于A、B兩地之間,∴交點代表了兩車離C地的距離相等,并不是兩車相遇,結論①錯誤;②甲車的速度為240÷4=60(km/h),乙車的速度為200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙車出發(fā)1.5h時,兩車相距170km,結論②正確;③∵(240+200﹣60)÷(60+80)=(h),∴乙車出發(fā)h時,兩車相遇,結論③正確;④∵80×(4﹣3.5)=40(km),∴甲車到達C地時,兩車相距40km,結論④正確.綜上所述,正確的結論有:②③④.故答案為:②③④.點睛:本題考查了一次函數的應用,根據函數圖象逐一分析四條結論的正誤是解題的關鍵.15、+2【解析】如圖,在BC上截取BD=AC=2,連接OD,∵四邊形AFEB是正方形,∴AO=BO,∠AOB=∠ACB=90°,∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,∵∠ACH=∠BHO,∴∠CAO=∠DBO,∴△ACO≌△BDO,∴DO=CO=,∠AOC=∠BOD,∵∠BOD+∠AOD=90°,∴∠AOD+∠AOC=90°,即∠COD=90°,∴CD=,∴BC=BD+CD=.故答案為:.點睛:本題的解題要點是,通過在BC上截取BD=AC,并結合已知條件證△ACO≌△BDO來證得△COD是等腰直角三角形,這樣即可求得CD的長,從而使問題得到解決.16、,,.【解析】

由二次根式的性質,得到,結合,即可求出整數m的值.【詳解】解:∵,∴,∴,∵,∴,∴整數m的值為:,,;故答案為:,,.【點睛】本題考查了二次根式的性質,以及解一元一次不等式,解題的關鍵是熟練掌握二次根式的性質,正確得到m的取值范圍.17、3+.【解析】試題分析:先進行二次根式的乘法運算,然后把各二次根式化為最簡二次根式即可.解:原式=4﹣﹣+2=3﹣+2=3+.故答案為3+.18、1【解析】

根據二次根式的性質,被開方數大于等于0可知:1-x≥0,解得x的范圍即可得出x的最大值.【詳解】根據題意得:1-x≥0,解得:x≤1,∴自變量x的最大值是1,故答案為1.【點睛】本題考查的是函數自變量取值范圍的求法.函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(1)當函數表達式是二次根式時,被開方數為非負數.三、解答題(共78分)19、(1);(2)【解析】

(1)兩邊開方,即可得出兩個一元一次方程,求出方程的解即可;(2)先把方程左邊利用十字相乘法分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】解:(1)兩邊開方得:x-3=±3,

∴x-3=3或x-3=-3,

∴x1=6,x2=0;

(2)2x2+x-1=0,

∴(2x-1)(x+1)=0,

∴2x-1=0或x+1=0,

∴,x2=.【點睛】本題考查了解一元二次方程,能把一元二次方程轉化成一元一次方程是解此題的關鍵.20、【解析】

直接提取公因式3,進而利用平方差公式分解因式即可.【詳解】解:3a2-27=3(a2-9)

=3(a+3)(a-3).

故答案為:3(a+3)(a-3).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確掌握公式法分解因式是解題關鍵.21、(1)購進甲、乙兩種服裝2件、1件(2)共有11種方案(3)購進甲種服裝70件,乙種服裝130件【解析】

(1)設購進甲種服裝x件,則乙種服裝是(200-x)件,根據兩種服裝共用去32400元,即可列出方程,從而求解.(2)設購進甲種服裝y件,則乙種服裝是(200-y)件,根據總利潤(利潤=售價-進價)不少于26700元,且不超過2620元,即可得到一個關于y的不等式組,解不等式組即可求得y的范圍,再根據y是正整數整數即可求解.(3)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】解:(1)設購進甲種服裝x件,則乙種服裝是(200-x)件,根據題意得:12x+150(200-x)=32400,解得:x=2,200-x=200-2=1.∴購進甲、乙兩種服裝2件、1件.(2)設購進甲種服裝y件,則乙種服裝是(200-y)件,根據題意得:,解得:70≤y≤2.∵y是正整數,∴共有11種方案.(3)設總利潤為W元,則W=(140-a)y+130(200-y),即w=(10-a)y+3.①當0<a<10時,10-a>0,W隨y增大而增大,∴當y=2時,W有最大值,此時購進甲種服裝2件,乙種服裝1件.②當a=10時,(2)中所有方案獲利相同,所以按哪種方案進貨都可以.③當10<a<20時,10-a<0,W隨y增大而減小,∴當y=70時,W有最大值,此時購進甲種服裝70件,乙種服裝130件.22、(1)一次函數的解析式為y=x-12(2)36【解析】分析:(1)先把點C(4,m)代入y=-3x+6得求得m=-6,然后利用待定系數法確定一次函數的解析式;(2)先確定直線y=-3x+6與x軸的交點坐標,然后利用S△ACD=S△ABD+S△ABC進行計算.(1)∵y=-3x+6經過點C(4,m)∵-3×4+6=m∴m=-6.點C的坐標為(4,-6)又∵y=kx+b過點A(8,0)和C(4,-6),所以,解得∴一次函數的解析式為y=x-12;(2)∵y=-3x+6與y軸交于點D,與x軸交于點B,∴D點的坐標為(0,6),點B的坐標為(2,0),過點C作CH⊥AB于H,又∵點A(8,0),點C(4,-6)∴AB=8-2=6,OD=6,CH=6,點睛:本題考查了兩直線平行或相交的問題:直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)平行,則k1=k2,直線y=k1x+b1(k1≠0)和直線y=k2x+b2(k2≠0)相交,則交點滿足兩函數的解析式,也考查了待定系數法求一次函數的解析式.23、(1)證明見解析;(2)成立,理由見解析.【解析】

(1)過點P作MN//BC,可以證明△PMQ≌△BNP,從而得出BP=QP;(2)過點作于,交于點,可以證明△PMQ≌△BNP,從而得出BP=QP;【詳解】(1)證明:過點作,分別交于點,交于點,則四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰直角三角形.∴NP=NC=MB∵∠BPQ=90°∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°,∴∠QPN=∠PBM,又∠QNP=∠PMB=90°,在△QNP和△BMP中,∠QNP=∠PMB,MB=NP,∠QPN=∠PBM∴△QNP≌△PMB(ASA),∴PQ=BP.(2)成立.過點作于,交于點在正方形中,∴∴是矩形,∴,∴是等腰直角三角形,∴,∵,∴,在和中,,∴,∴;【點睛】本題考查了正方形的性質,全等三角形的判定,解題的關鍵在根據正方形的性質得到判定全等三角形的條件,進而得到結論成立.24、(1);(2)的面積是.【解析】

(1)由矩形的性質可得AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC,由勾股定理可求AC=5,由折疊的性質和平行線的性質可得AE=CE,由勾股定理可求AE的長,由三角形面積公式可求EF的長;(2)由折疊的性質可得AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,由“SAS”可證△BAM≌△DCN,△AMD≌△CNB可得MD=BN,BM=DN,可得四邊形MDNB是平行四邊形,通過證明四邊形MDNB是矩形,可得∠BND=90°,由三角形面積公式可求DF的長,由勾股定理可求BN的長,即可求四邊形BMDN的面積.【詳解】解:(1)∵四邊形ABCD是矩形∴AB=CD=3,AD=BC=4,∠B=∠D=90°,AD∥BC∴AC==5,∵將Rt△ABC沿著對角線AC對折得到△AMC.∴∠BCA=∠ACE,∵AD∥BC∴∠DAC=∠BCA∴∠EAC=∠ECA∴AE=EC∵EC2=ED2+CD2,∴AE2=(4?AE)2+9,∴AE=,∵S△AEC=×AE×DC=×AC×EF,∴×3=5×EF,∴EF=;(2)如圖所示:∵將Rt△ABC沿著對角線AC對折得到△AMC,將Rt△ADC沿著對角線AC對折得到△ANC,∴AB=AM=3,CD=CN=3,∠BAC=∠CAM,∠ACD=∠ACN,AC⊥DN,DF=FN,∵AB∥CD∴∠BAC=∠ACD∴∠BAC=∠ACD=∠CAM=∠ACN∴∠BAM=∠DCN,且BA=AM=CD=CN∴△BAM≌△DCN(SAS)∴BM=DN∵∠BAM=∠DCN∴∠BAM?90°=∠DCN?90°∴∠MAD=∠BCN,且AD=BC,AM=CN∴△AMD≌△CNB(SAS)∴MD=BN,且BM=DN∴四邊形MDNB是平行四邊形連接BD,由(1)可知:∠EAC=∠ECA,∵∠AMC=∠ADC=90°∴點A,點C,點D,點M四點共圓,∴∠ADM=∠ACM,∴∠ADM=∠CAD∴AC∥MD,且AC⊥DN∴MD⊥DN,∴四邊形BNDM是矩形∴∠BND=90°∵S△ADC=×AD×CD=×AC×DF∴DF=∴DN=∵四邊形ABCD是矩形∴AC=BD=5,∴BN=∴四邊形BMDN的面積=BN×DN=×=.【點睛】本題是四邊形綜合題,考查了矩形的判定和性質,折疊的性質,勾股定理,全等三角形的判定和性質,證明四邊形BNDM是矩形是本題的關鍵.25、(1)證明見解析(2)2【解析】試題分析:根據正方形的性質得到AD=AB,∠B=∠D=90°,根據折疊的性質可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論