版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024年山東省濰坊諸城市八年級數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若關(guān)于x的方程x2+6x-a=0無實數(shù)根,則a的值可以是下列選項中的()A.-10 B.-9 C.9 D.102.下列計算正確的是()A.=2 B. C. D.3.下面各問題中給出的兩個變量x,y,其中y是x的函數(shù)的是①x是正方形的邊長,y是這個正方形的面積;②x是矩形的一邊長,y是這個矩形的周長;③x是一個正數(shù),y是這個正數(shù)的平方根;④x是一個正數(shù),y是這個正數(shù)的算術(shù)平方根.A.①②③ B.①②④ C.②④ D.①④4.下列由左到右變形,屬于因式分解的是A. B.C. D.5.若一個直角三角形的兩直角邊長分別為3和4,則下列說法不正確的是()A.這個直角三角形的斜邊長為5B.這個直角三角形的周長為12C.這個直角三角形的斜邊上的高為D.這個直角三角形的面積為126.能判定一個四邊形是平行四邊形的條件是()A.一組對角相等 B.兩條對角線互相平分C.一組對邊相等 D.兩條對角線互相垂直7.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.8.已知四邊形ABCD中,AB∥CD,添加下列條件仍不能判斷四邊形ABCD是平行四邊形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=180°9.如圖的陰影部分是兩個正方形,圖中還有兩個直角三角形和一個大正方形,則陰影部分的面積是()A.16 B.25 C.144 D.16910.一艘漁船從港口A沿北偏東60°方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45°方向以30海里/小時的速度前往C處救援.則救援艇到達C處所用的時間為()A.小時 B.小時 C.小時 D.小時11.甲、乙、丙、丁四人進行射擊測試,每人10次射擊成績平均數(shù)均是9.2環(huán),方差分別為,則成績最穩(wěn)定的是(
)A.甲 B.乙 C.丙 D.丁12.15名同學(xué)參加八年級數(shù)學(xué)競賽初賽,他們的得分互不相同,按從高分到低分的原則,錄取前8名同學(xué)參加復(fù)賽,現(xiàn)在小聰同學(xué)已經(jīng)知道自己的分數(shù),如果他想知道自己能否進入復(fù)賽,那么還需知道所有參賽學(xué)生成績的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差二、填空題(每題4分,共24分)13.若有意義,則x的取值范圍為___.14.如圖,正方形ABCD的邊長為8,點E是BC上的一點,連接AE并延長交射線DC于點F,將△ABE沿直線AE翻折,點B落在點N處,AN的延長線交DC于點M,當AB=2CF時,則NM的長為_____.15.若一個三角形的三邊的比為3:4:5,則這個三角形的三邊上的高之比為__________.16.將正比例函數(shù)的圖象向右平移2個單位,則平移后所得到圖象對應(yīng)的函數(shù)解析式是__________.17.如圖,邊長為2的正方形ABCD中,AE平分∠DAC,AE交CD于點F,CE⊥AE,垂足為點E,EG⊥CD,垂足為點G,點H在邊BC上,BH=DF,連接AH、FH,F(xiàn)H與AC交于點M,以下結(jié)論:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG?DG,其中正確結(jié)論的有_____(只填序號).18.如圖,線段AC、BD交于點O,請你添加一個條件:________,使△AOB∽△COD.三、解答題(共78分)19.(8分)如圖,直線l的解析式為y=-x+,與x軸,y軸分別交于A,B兩點,雙曲線與直線l交于E,F(xiàn)兩點,點E的橫坐標為1.(1)求k的值及F點的坐標;(2)連接OE,OF,求△EOF的面積;(3)若點P是EF下方雙曲線上的動點(不與E,F(xiàn)重合),過點P作x軸,y軸的垂線,分別交直線l于點M,N,求的值.20.(8分)解不等式組:,把它的解集在數(shù)軸上表示出來,并寫出其整數(shù)解.21.(8分)某廠制作甲、乙兩種環(huán)保包裝盒.已知同樣用6m的材料制成甲盒的個數(shù)比制成乙盒的個數(shù)少2個,且制成一個甲盒比制作一個乙盒需要多用20%的材料.(1)求制作每個甲盒、乙盒各用多少材料?(2)如果制作甲、乙兩種包裝盒3000個,且甲盒的數(shù)量不少于乙盒數(shù)量的2倍,那么請寫出所需材料總長度與甲盒數(shù)量之間的函數(shù)關(guān)系式,并求出最少需要多少米材料.22.(10分)如圖,在四邊形ABCD中,BD為一條對角線,且,,E為AD的中點,連接BE.(1)求證:四邊形BCDE為菱形;(2)連接AC,若AC平分,,求AC的長.23.(10分)某校為災(zāi)區(qū)開展了“獻出我們的愛”賑災(zāi)捐款活動,九年級(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動,因不慎,表中數(shù)據(jù)有一處被墨水污染,已無法看清,但已知全班平均每人捐款38元.捐款(元)1015305060人數(shù)361111136(1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為.(2)該班捐款金額的眾數(shù)為,中位數(shù)為.(3)如果用九年級(1)班捐款情況作為一個樣本,請估計全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?24.(10分)在矩形ABCD中,AB=3,AD=2,點E是射線DA上一點,連接EB,以點E為圓心EB長為半徑畫弧,交射線CB于點F,作射線FE與CD延長線交于點G.(1)如圖1,若DE=5,則∠DEG=______°;(2)若∠BEF=60°,請在圖2中補全圖形,并求EG的長;(3)若以E,F(xiàn),B,D為頂點的四邊形是平行四邊形,此時EG的長為______.25.(12分)如圖,在平面直角坐標系中,直線與雙曲線交于第一、三象限內(nèi)的、兩點,與軸交于點,過點作軸,垂足為,,,點的縱坐標為1.(1)求反比例函數(shù)和一次函數(shù)的函數(shù)表達式;(2)連接,求四邊形的面積;(3)在(1)的條件下,根據(jù)圖像直接寫出反比例函數(shù)的值小于一次函數(shù)的值時,自變量的取值范圍.26.如圖(1)是超市的兒童玩具購物車,圖(2)為其側(cè)面簡化示意圖,測得支架AC=24cm,CB=18cm,兩輪中心的距離AB=30cm,求點C到AB的距離.(結(jié)果保留整數(shù))
參考答案一、選擇題(每題4分,共48分)1、A【解析】
二次方程無實數(shù)根,Δ<0,據(jù)此列不等式,解不等式,在解集中取數(shù)即可.【詳解】解:根據(jù)題意得:Δ=36+4a<0,得a<-9.故答案為:A【點睛】本題考查了一元二次方程的根,Δ>0,有兩個實數(shù)根,Δ=0,有兩個相等的實數(shù)根,Δ<0,無實數(shù)根,根據(jù)Δ的取值判斷一元二次方程根的情況是解題的關(guān)鍵.2、C【解析】
根據(jù)二次根式的性質(zhì)與二次根式的乘除運算法則逐項進行計算即可得.【詳解】A.=4,故A選項錯誤;B.與不是同類二次根式,不能合并,故B選項錯誤;C.,故C選項正確;D.=,故D選項錯誤,故選C.【點睛】本題考查了二次根式的化簡、二次根式的加減運算、乘除運算,解題的關(guān)鍵是掌握二次根式的性質(zhì)與運算法則.3、D【解析】
根據(jù)題意對各選項分析列出表達式,然后根據(jù)函數(shù)的定義分別判斷即可得解.【詳解】解:①、y=x2,y是x的函數(shù),故①正確;②、x是矩形的一邊長,y是這個矩形的周長,無法列出表達式,y不是x的函數(shù),故②錯誤;③、y=±,每一個x的值對應(yīng)兩個y值,y不是x的函數(shù),故③錯誤;
④、y=,每一個x的值對應(yīng)一個y值,y是x的函數(shù),故④正確.
故選D.【點睛】本題考查函數(shù)的概念,準確表示出各選項中的y、x的關(guān)系是解題的關(guān)鍵.4、A【解析】
根據(jù)因式分解是把一個整式分解成幾個整式乘積的形式由此即可解答.【詳解】選項A,符合因式分解的定義,本選項正確;選項B,結(jié)果不是整式的積的形式,不是因式分解,本選項錯誤;選項C,結(jié)果不是整式的積的形式,不是因式分解,本選項錯誤;選項D,結(jié)果不是整式的積的形式,因而不是因式分解,本選項錯誤.故選A.【點睛】本題主要考查了因式分解的定義,正確理解因式分解的定義是解題關(guān)鍵.5、D【解析】
先根據(jù)勾股定理求出斜邊長,再根據(jù)三角形面積公式,三角形的性質(zhì)即可判斷.【詳解】解:根據(jù)勾股定理可知,直角三角形兩直角邊長分別為3和4,則它的斜邊長是,周長是3+4+5=12,斜邊長上的高為,面積是3×4÷2=1.故說法不正確的是D選項.故選:D.【點睛】本題考查了利用勾股定理解直角三角形的能力,即:直角三角形兩直角邊的平方和等于斜邊的平方.但本題也用到了三角形的面積公式,和周長公式.6、B【解析】
根據(jù)平行四邊形的判定定理進行判斷即可.【詳解】A.兩組對角分別相等的四邊形是平行四邊形,故本選項錯誤;B.兩條對角線互相平分的四邊形是平行四邊形,故本選項正確;C.兩組對邊分別相等的四邊形是平行四邊形,故本選項錯誤;D.對角線互相平分的四邊形才是平行四邊形,而對角線互相垂直的四邊形不一定是平行四邊形,故本選項錯誤.故選B.【點睛】本題考查平行四邊形的判定,定理有:①兩組對角分別相等的四邊形是平行四邊形,②兩組對邊分別相等的四邊形是平行四邊形,③對角線互相平分的四邊形是平行四邊形,④有一組對邊相等且平行的四邊形是平行四邊形.7、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形8、B【解析】
平行四邊形的判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形.【詳解】解:根據(jù)平行四邊形的判定,A、C、D均符合是平行四邊形的條件,B則不能判定是平行四邊形.故選B.【點睛】此題主要考查了學(xué)生對平行四邊形的判定的掌握情況.對于判定定理:“一組對邊平行且相等的四邊形是平行四邊形.”應(yīng)用時要注意必須是“一組”,而“一組對邊平行且另一組對邊相等”的四邊形不一定是平行四邊形.9、B【解析】
兩個陰影正方形的面積和等于直角三角形另一未知邊的平方,利用勾股定理即可求出.【詳解】兩個陰影正方形的面積和為132-122=25,所以B選項是正確的.【點睛】本題主要考查了正方形的面積以及勾股定理的應(yīng)用,推知“正方形的面積和等于直角三角形另一未知邊的平方”是解題的難點.10、C【解析】
過點C作CD垂直AB延長線于D,根據(jù)題意得∠CDB=45°,∠CAD=30°,設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30°可知tan∠CAD=即,解方程求出BD的長,從而可知BC的長,進而求出救援艇到達C處所用的時間即可.【詳解】如圖:過點C作CD垂直AB延長線于D,則∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達C處所用的時間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t==(小時),故選C.【點睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.11、D【解析】
因為=0.56,=0.60,=0.50,=0.45所以<<<,由此可得成績最穩(wěn)定的為?。蔬x.點睛:方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.12、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小明同學(xué)知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學(xué)的分數(shù)的中位數(shù).
故選B.【點睛】本題考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.二、填空題(每題4分,共24分)13、x≥﹣1.【解析】
根據(jù)被開方數(shù)大于等于0,分母不等于0列式計算即可得解.【詳解】由題意得,x+1≥0且x+2≠0,解得x≥﹣1.故答案為x≥﹣1.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.14、【解析】
先根據(jù)折疊的性質(zhì)得∠EAB=∠EAN,AN=AB=8,再根據(jù)正方形的性質(zhì)得AB∥CD,則∠EAB=∠F,所以∠EAN=∠F,得到MA=MF,設(shè)CM=x,則AM=MF=4+x,DM=DC-MC=8-x,在Rt△ADM中,根據(jù)勾股定理,解得x,然后利用MN=AM-AN求解即可.【詳解】解:∵△ABE沿直線AE翻折,點B落在點N處,∴AN=AB=8,∠BAE=∠NAE,∵正方形對邊AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,設(shè)CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案為:.【點睛】本題考查了折疊的性質(zhì):折疊是一種對稱變換,折疊前后圖形的形狀和大小不變,對應(yīng)邊和對應(yīng)角相等,也考查了正方形的性質(zhì)和勾股定理,熟練掌握正方形的性質(zhì)及折疊的性質(zhì)并能正確運用勾股定理是解題的關(guān)鍵.15、20:15:1.【解析】
根據(jù)勾股定理的逆定理得到這個三角形是直角三角形,根據(jù)三角形的面積公式求出斜邊上的高,然后計算即可.【詳解】解:設(shè)三角形的三邊分別為3x、4x、5x,∵(3x)2+(4x)2=25x2=(5x)2,∴這個三角形是直角三角形,設(shè)斜邊上的高為h,則×3x×4x=×5x×h,解得,h=,則這個三角形的三邊上的高之比=4x:3x:=20:15:1,故答案為:20:15:1.【點睛】本題考查的是勾股定理的逆定理、三角形的面積計算,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.16、【解析】
根據(jù)“左加右減”的法則求解即可.【詳解】解:將正比例函數(shù)的圖象向右平移2個單位,得=,故答案為:.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關(guān)鍵.17、①②④⑤【解析】
①②∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=?FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故選項①②正確;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的邊長為2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF?AD≠1,所以選項③不正確;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故選項④正確;⑤在Rt△FEC中,EG⊥FC,∴=FG?CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG?DG,故選項⑤正確;本題正確的結(jié)論有4個,故答案為①②④⑤.18、OB=OD.(答案不唯一)【解析】
AO=OC,有一對對頂角∠AOB與∠COD,添加OB=OD,即得結(jié)論.【詳解】解:∵OA=OC,∠AOB=∠COD(對頂角相等),OB=OD,∴△ABO≌△CDO(SAS).故答案為:OB=OD.(答案不唯一)【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.三、解答題(共78分)19、(1);(2);(3)【解析】
(1)求出點E縱坐標,把點E坐標代入反比例函數(shù)解析式中即可求出k的值,再聯(lián)立方程組求出點F的坐標;(2)運用“割補法”,根據(jù)求解即可;【詳解】(1)設(shè)點的坐標為(1,a),代入y=y=-x+得,a=2,∴,把代入得,∴聯(lián)立方程組得,解得,∴(2)分別過點、做軸的垂線段、,如圖,令y=0,則,解得x=7,令x=0,則y=∴,,又,,∵===(3)如圖,設(shè),則有則,,,∴,∴【點睛】本題主要考查反比例函數(shù)的綜合題,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及運用“割補法”求三角形的面積.20、,x的整數(shù)解為﹣1,﹣1,0,1,1.【解析】
先對不等式組中的兩個不等式進行分別求解,求得解集,再將解集表示在數(shù)軸上.【詳解】解:解不等式①,,解不等式②,,∴,解集在數(shù)軸上表示如下:∴x的整數(shù)解為﹣1,﹣1,0,1,1.【點睛】本題考查不等式組和數(shù)軸,解題的關(guān)鍵是熟練掌握不等式組的求解和有理數(shù)在數(shù)軸上的表示.21、甲盒用1.6米材料;制作每個乙盒用1.5米材料;l=1.1n+1511,1711.【解析】
首先設(shè)制作每個乙盒用米材料,則制作甲盒用(1+21%)米材料,根據(jù)乙的數(shù)量-甲的數(shù)量=2列出分式方程進行求解;根據(jù)題意得出n的取值范圍,然后根據(jù)l與n的關(guān)系列出函數(shù)解析式,根據(jù)一次函數(shù)的增減性求出最小值.【詳解】解:(1)設(shè)制作每個乙盒用米材料,則制作甲盒用(1+21%)米材料由題可得:解得x=1.5(米)經(jīng)檢驗x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每個甲盒用1.6米材料;制作每個乙盒用1.5米材料(2)由題∴∵,∴l(xiāng)隨n增大而增大,∴當時,考點:分式方程的應(yīng)用,一次函數(shù)的性質(zhì).22、(1)詳見解析(2)【解析】
(1)題干中由且可知,一組對邊平行且相等的四邊形是平行四邊形,則四邊形BCDE是平行四邊形,又知BE是直角三角形斜邊的中線,直角三角形斜邊的中線等于斜邊的一半,則得到BE=ED,從而再用一組鄰邊相等的平行四邊形是菱形證明即可.(2)通過DE∥BC和AC平分,可得到∠BAC=∠ACB,從而由等角對等邊得到AB=BC=1,則此時直角三角形ABD,有一個執(zhí)教不是斜邊的一半,則可知這個直角邊對應(yīng)的角是30°,找到30°才是題目的突破口,然后依次得到角度的關(guān)系,證明得到三角形ACD是直角三角形,再用勾股定理解得AC的長.【詳解】(1)證明:∵DE∥BC且DE=BC(已知)∴四邊形BCDE是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)又∵E為直角三角形斜邊AD邊的中點(已知)∴BE=AD,即BE=DE(直角三角形斜邊的中線等于斜邊的一半)∴平行四邊形四邊形BCDE是菱形(一組鄰邊相等的平行四邊形是菱形)(2)連接AC,如圖可知:∵DE∥BC(已知)∴∠DAC=∠ACB(兩直線平行內(nèi)錯角相等)又∵AC平分(已知)∴∠BAC=∠DAC(角平分線的定義)即∠BAC=∠ACB(等量代換)∴AB=BC=1(等角對等邊)由(1)可知:AD=2ED=2BC=2在直角三角形中AB=1,AD=2∴∠ADB=30°(直角三角形中,若一個直角邊是斜邊一半,則這個直角邊所對的角是30°)∴∠BAD=60°(直角三角形兩銳角互余)即∠CAD=∠BAD=30°(角平分線的定義),∠ADC=2∠ADB=60°(菱形的性質(zhì))所以三角形ADC是直角三角形.則由可知:【點睛】本題為綜合性的幾何證明試題,運用到的重點知識點有,菱形的判定定理,菱形的性質(zhì),直角三角形斜邊中線定理,30°角定理,勾股定理,注意證明過程中,條理清楚,因果對應(yīng),靈活運用才是解題關(guān)鍵.23、(1)40;(2)50,40;(3)1200人【解析】
(1)根據(jù)平均數(shù)的定義即可列式求解;(2)根據(jù)表格即可求出眾數(shù)、中位數(shù);(3)先求出捐款40元以上(包括40元)的人數(shù)占比,再乘以總?cè)藬?shù)即可求解.【詳解】(1)設(shè)被污染處的數(shù)據(jù)錢數(shù)為x,故解得x=40;(2)由表格得眾數(shù)為50,第25,26位同學(xué)捐的錢數(shù)為40,故中位數(shù)為40;(3)解:全校捐款40元以上(包括40元)的人數(shù)為(人)【點睛】此題主要考查統(tǒng)計調(diào)查的應(yīng)用,解題的關(guān)鍵是熟知平均數(shù)、中位線、眾數(shù)的定義.24、(1)45;(2)見解析,EG=4+2;(3)2【解析】
(1)由題意可得AE=AB=3,可得∠AEB=∠ABE=45°,由矩形的性質(zhì)可得AD∥BC,可得∠AEB=∠EBF=45°,∠EFB=∠GED,結(jié)合等腰三角形的性質(zhì),即可求解;(2)由題意畫出圖形,可得∠F=∠5=60°,可得∠6=∠G=30°,由直角三角形的性質(zhì)可得AE=,DE=2+,由直角三角形的性質(zhì)可得EG的長;(3)由平行四邊形的性質(zhì)可得EF=BD,ED=BF,由等腰三角形的性質(zhì)可得AE=AD=2,由勾股定理可求EF=BE=,由EH∥CG∥BM,H是BF的中點,B是HC的中點,即可求解.【詳解】(1)∵DE=5,AB=3,AD=2,∴AE=AB=3,∴∠AEB=∠ABE=45°,∵四邊形ABCD是矩形,∴AD∥CB,∴∠AEB=∠EBF=45°,∠EFB=∠GED,∵EF=EB,∴∠EFB=∠EBF=45°,∴∠GED=45°,故答案為:45;(2)如圖1所示.∵四邊形ABCD是矩形,∴∠1=∠2=∠3=∠ABF=∠C=90°.∵∠4=60°,EF=EB,∴∠F=∠5=60°.∴∠6=∠G=30°,∴AE=BE.∵AB=3,∴根據(jù)勾股定理可得:AE2+32=(2AE)2,解得:AE=,∵AD=2,∴DE=2+,∴EG=2DE=4+2;(3)如圖2,連接BD,過點E作EH⊥FC,延長BA交FG于點M,∵四邊形EDBF是平行四邊形,∴EF=BD,ED=BF,∵EF=BE,∴EB=BD,且AB⊥DE,∴AE=AD=2,∴BF=DE=4,∵EB==,∴EF=,∵EF=BE,EH⊥FC,∴FH=BH=2=BC,∴CH=4,∵EH⊥BC,CD⊥BC,AB⊥BC,∴EH∥CG∥BM,∵H是BF的中點,B是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【名師一號】2020-2021學(xué)年北師大版高中數(shù)學(xué)必修1:第四章-函數(shù)應(yīng)用-單元同步測試
- 2025年八年級統(tǒng)編版語文寒假預(yù)習(xí) 第09講 《經(jīng)典常談》
- 【同步課堂】2020年化學(xué)人教版選修5教案:4-2-糖類
- 四年級下冊英語單詞表
- 統(tǒng)編版語文三年級下冊看詞語寫拼音(無答案)
- 北京市大興區(qū)2024-2025學(xué)年七年級上學(xué)期期末 歷史試題(含答案)
- 【創(chuàng)新設(shè)計】2021高考語文(福建專用)一輪規(guī)范訓(xùn)練:第十單元-時文短評
- 《分子和原子公開》課件
- 三年級數(shù)學(xué)計算題專項練習(xí)匯編及答案集錦
- 2023小學(xué)教師教學(xué)工作總結(jié)怎么寫
- 計算機信息系統(tǒng)分級保護方案
- 二年級豎式計算題720道(打印排版)
- 頂管施工技術(shù)全面詳解
- 公路工程質(zhì)量檢驗評定標準(交安部分)
- 整式的乘法和因式分解純計算題100道
- 東北石油大學(xué)學(xué)業(yè)預(yù)警、留級與退學(xué)制度修訂情況說明
- Consent-Letter-for-Children-Travelling-Abroad
- 護士工作量統(tǒng)計表
- 中價協(xié)[2013]35號造價取費
- 玻璃鱗片施工技術(shù)規(guī)范
- 初中物理實驗記錄表
評論
0/150
提交評論