2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省蘇州市吳江區(qū)中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.6的絕對值是()A.6 B.﹣6 C. D.2.如圖,是的外接圓,已知,則的大小為A. B. C. D.3.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm4.點A為數(shù)軸上表示-2的動點,當(dāng)點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是()A.1B.-6C.2或-6D.不同于以上答案5.已知常數(shù)k<0,b>0,則函數(shù)y=kx+b,的圖象大致是下圖中的()A. B.C. D.6.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關(guān)系是()A.M>N B.M=N C.M<N D.不能確定7.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.38.下列事件中必然發(fā)生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)9.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠210.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體二、填空題(共7小題,每小題3分,滿分21分)11.計算(-2)×3+(-3)=_______________.12.直角三角形的兩條直角邊長為6,8,那么斜邊上的中線長是____.13.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F(xiàn)分別是線段BC,AC的中點,連結(jié)EF.(1)線段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當(dāng)△CEF繞點C順時針旋轉(zhuǎn)a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).14.8的算術(shù)平方根是_____.15.在實數(shù)﹣2、0、﹣1、2、中,最小的是_______.16.如圖所示,一只螞蟻從A點出發(fā)到D,E,F(xiàn)處尋覓食物.假定螞蟻在每個岔路口都等可能的隨機選擇一條向左下或右下的路徑(比如A岔路口可以向左下到達B處,也可以向右下到達C處,其中A,B,C都是岔路口).那么,螞蟻從A出發(fā)到達E處的概率是_____.17.已知方程的一個根為1,則的值為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時,求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.19.(5分)已知:二次函數(shù)圖象的頂點坐標(biāo)是(3,5),且拋物線經(jīng)過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關(guān)于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.20.(8分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當(dāng)點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.21.(10分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.22.(10分)解方程:1+23.(12分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(zhuǎn)(保持點P在△ABC內(nèi)部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當(dāng)三角板CPQ繞點C旋轉(zhuǎn)到點A、P、Q在同一直線時,求AP的長;設(shè)射線AP與射線BQ相交于點E,連接EC,寫出旋轉(zhuǎn)過程中EP、EQ、EC之間的數(shù)量關(guān)系.24.(14分)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=8(1)求一次函數(shù)的解析式;(2)求ΔAOB的面積。

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:1是正數(shù),絕對值是它本身1.故選A.考點:絕對值.2、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.3、D【解析】【分析】先求AC,再根據(jù)點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關(guān)鍵點:利用線段的中點求出線段長度.4、C【解析】解:∵點A為數(shù)軸上的表示-1的動點,①當(dāng)點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-1-4=-6;②當(dāng)點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為-1+4=1.故選C.點睛:注意數(shù)的大小變化和平移之間的規(guī)律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.5、D【解析】

當(dāng)k<0,b>0時,直線經(jīng)過一、二、四象限,雙曲線在二、四象限,由此確定正確的選項.【詳解】解:∵當(dāng)k<0,b>0時,直線與y軸交于正半軸,且y隨x的增大而減小,∴直線經(jīng)過一、二、四象限,雙曲線在二、四象限.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象與性質(zhì).關(guān)鍵是明確系數(shù)與圖象的位置的聯(lián)系.6、A【解析】

若比較M,N的大小關(guān)系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.7、B【解析】【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設(shè)C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標(biāo)特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.8、C【解析】

直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式,是隨機事件,故此選項錯誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關(guān)定義是解題關(guān)鍵.9、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D10、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.二、填空題(共7小題,每小題3分,滿分21分)11、-9【解析】

根據(jù)有理數(shù)的計算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點睛】此題主要考查有理數(shù)的混合運算,解題的關(guān)鍵是熟知有理數(shù)的運算法則.12、1.【解析】

試題分析:∵直角三角形的兩條直角邊長為6,8,∴由勾股定理得,斜邊=10.∴斜邊上的中線長=×10=1.考點:1.勾股定理;2.直角三角形斜邊上的中線性質(zhì).13、(1)互相垂直;;(2)結(jié)論仍然成立,證明見解析;(3)135°.【解析】

(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關(guān)系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F(xiàn)分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F(xiàn)分別是線段BC,AC的中點,

∴EC=BC,F(xiàn)C=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.14、2.【解析】試題分析:本題主要考查的是算術(shù)平方根的定義,掌握算術(shù)平方根的定義是解題的關(guān)鍵.依據(jù)算術(shù)平方根的定義回答即可.由算術(shù)平方根的定義可知:8的算術(shù)平方根是,∵=2,∴8的算術(shù)平方根是2.故答案為2.考點:算術(shù)平方根.15、﹣1.【解析】

解:在實數(shù)﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.【點睛】本題考查實數(shù)大小比較.16、【解析】試題分析:如圖所示,一只螞蟻從點出發(fā)后有ABD、ABE、ACE、ACF四條路,所以螞蟻從出發(fā)到達處的概率是.考點:概率.17、1【解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【詳解】設(shè)方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【點睛】本題的考點是一元二次方程的根的分布與系數(shù)的關(guān)系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2);(3)4<OC<1.【解析】

(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點,結(jié)合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設(shè)點M為Rt△APO的外心,則M為OA的中點,

∵OA=1,

∴OM=4,

∴當(dāng)△APO的外心在扇形COD的內(nèi)部時,OM<OC,

∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關(guān)鍵.19、(1)y=-(x-3)2+5(2)5【解析】

(1)設(shè)頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標(biāo)代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標(biāo),然后根據(jù)三角形面積公式求解.【詳解】(1)設(shè)此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標(biāo)代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標(biāo)特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關(guān)鍵.20、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時,設(shè)正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時,設(shè)正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運用性質(zhì)進行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.21、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;

(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠1,

∴∠ACD=∠1,

∴MC=MD,

∵ME⊥CD,

∴CD=1CE,

∵CE=1,

∴CD=1,

∴BC=CD=1;

(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,

∴BF=CF=BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∵,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延長AB交DF的延長線于點G,

∵AB∥CD,

∴∠G=∠1,

∵∠1=∠1,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∵∴△CDF≌△BGF(AAS),

∴GF=DF,

由圖形可知,GM=GF+MF,

∴AM=DF+ME.22、無解.【解析】

兩邊都乘以x(x-3),去分母,化為整式方程求解即可.【詳解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,經(jīng)檢驗x=3是增根,分式方程無解.【點睛】題考查了分式方程的解法,其基本思路是把方程的兩邊都乘以各分母的最簡公分母,化為整式方程求解,求出x的值后不要忘記檢驗.23、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據(jù)勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設(shè)BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論