版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆江蘇省江陰市南菁教育集團(tuán)暨陽校區(qū)中考數(shù)學(xué)四模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知△ADE是△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)所得,其中點(diǎn)D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點(diǎn)F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α2.如圖①是半徑為2的半圓,點(diǎn)C是弧AB的中點(diǎn),現(xiàn)將半圓如圖②方式翻折,使得點(diǎn)C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣3.已知一個正n邊形的每個內(nèi)角為120°,則這個多邊形的對角線有()A.5條 B.6條 C.8條 D.9條4.如圖,?ABCD的對角線AC,BD相交于點(diǎn)O,E是AB中點(diǎn),且AE+EO=4,則?ABCD的周長為()A.20B.16C.12D.85.已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°6.如圖,,則的度數(shù)為()A.115° B.110° C.105° D.65°7.如圖,△ABC的面積為12,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C處,P為直線AD上的一點(diǎn),則線段BP的長可能是()A.3 B.5 C.6 D.108.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點(diǎn)F是AC的中點(diǎn),AD與FE,CE分別交于點(diǎn)G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.49.下列命題是真命題的是()A.過一點(diǎn)有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形10.為了解某校初三學(xué)生的體重情況,從中隨機(jī)抽取了80名初三學(xué)生的體重進(jìn)行統(tǒng)計(jì)分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學(xué)生C.被抽取的80名初三學(xué)生的體重 D.該校初三學(xué)生的體重二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.12.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點(diǎn),則CP+AP的最小值為_____.13.若關(guān)于x、y的二元一次方程組的解滿足x+y>0,則m的取值范圍是____.14.?dāng)?shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復(fù)原的原則》《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.15.邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_________.16.因式分解:a2b-4ab+4b=______.17.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點(diǎn)B在射線CA上,且BC=5,則△BDE周長的最小值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在中,,且,,為的中點(diǎn),于點(diǎn),連結(jié),.(1)求證:;(2)當(dāng)為何值時(shí),的值最大?并求此時(shí)的值.19.(5分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?20.(8分)先化簡,再求值:,其中,a、b滿足.21.(10分)每到春夏交替時(shí)節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.治理?xiàng)钚跻灰荒x哪一項(xiàng)?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是;(3)請補(bǔ)全條形統(tǒng)計(jì)圖;(4)若該市約有90萬人,請估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).22.(10分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).(1)求點(diǎn)B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.23.(12分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形,并說明理由.24.(14分)在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字1,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,1.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);求點(diǎn)M(x,y)在函數(shù)y=﹣2x
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
利用旋轉(zhuǎn)不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問題,屬于中考常考題型.2、D【解析】
連接OC交MN于點(diǎn)P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計(jì)算即可.【詳解】解:連接OC交MN于點(diǎn)P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.【點(diǎn)睛】本題考查了軸對稱的性質(zhì)的運(yùn)用、勾股定理的運(yùn)用、三角函數(shù)值的運(yùn)用、扇形的面積公式的運(yùn)用、三角形的面積公式的運(yùn)用,解答時(shí)運(yùn)用軸對稱的性質(zhì)求解是關(guān)鍵.3、D【解析】
多邊形的每一個內(nèi)角都等于120°,則每個外角是60°,而任何多邊形的外角是360°,則求得多邊形的邊數(shù);再根據(jù)多邊形一個頂點(diǎn)出發(fā)的對角線=n﹣3,即可求得對角線的條數(shù).【詳解】解:∵多邊形的每一個內(nèi)角都等于120°,∴每個外角是60度,則多邊形的邊數(shù)為360°÷60°=6,則該多邊形有6個頂點(diǎn),則此多邊形從一個頂點(diǎn)出發(fā)的對角線共有6﹣3=3條.∴這個多邊形的對角線有(6×3)=9條,故選:D.【點(diǎn)睛】本題主要考查多邊形內(nèi)角和與外角和及多邊形對角線,掌握求多邊形邊數(shù)的方法是解本題的關(guān)鍵.4、B【解析】
首先證明:OE=12【詳解】∵四邊形ABCD是平行四邊形,∴OA=OC,∵AE=EB,∴OE=12∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四邊形ABCD的周長=2×8=16,故選:B.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關(guān)鍵是熟練掌握三角形的中位線定理,屬于中考??碱}型.5、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點(diǎn)睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運(yùn)用.6、A【解析】
根據(jù)對頂角相等求出∠CFB=65°,然后根據(jù)CD∥EB,判斷出∠B=115°.【詳解】∵∠AFD=65°,∴∠CFB=65°,∵CD∥EB,∴∠B=180°?65°=115°,故選:A.【點(diǎn)睛】本題考查了平行線的性質(zhì),知道“兩直線平行,同旁內(nèi)角互補(bǔ)”是解題的關(guān)鍵.7、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據(jù)折疊得出∠C′AB=∠CAB,根據(jù)角平分線性質(zhì)得出BN=BM,根據(jù)三角形的面積求出BN,即可得出點(diǎn)B到AD的最短距離是8,得出選項(xiàng)即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點(diǎn)B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項(xiàng)D符合,
故選D.【點(diǎn)睛】本題考查的知識點(diǎn)是折疊的性質(zhì),三角形的面積,角平分線性質(zhì)的應(yīng)用,解題關(guān)鍵是求出B到AD的最短距離,注意:角平分線上的點(diǎn)到角的兩邊的距離相等.8、C【解析】
①圖中有3個等腰直角三角形,故結(jié)論錯誤;②根據(jù)ASA證明即可,結(jié)論正確;③利用面積法證明即可,結(jié)論正確;④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考選擇題中的壓軸題.9、D【解析】
根據(jù)真假命題的定義及有關(guān)性質(zhì)逐項(xiàng)判斷即可.【詳解】A、真命題為:過直線外一點(diǎn)有且只有一條直線與已知直線平行,故本選項(xiàng)錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項(xiàng)錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項(xiàng)錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質(zhì)是解答本題的關(guān)鍵,當(dāng)命題的條件成立時(shí),結(jié)論也一定成立的命題叫做真命題;當(dāng)命題的條件成立時(shí),不能保證命題的結(jié)論總是成立的命題叫做假命題.熟練掌握所學(xué)性質(zhì)是解答本題的關(guān)鍵.10、C【解析】
總體是指考查的對象的全體,個體是總體中的每一個考查的對象,樣本是總體中所抽取的一部分個體,而樣本容量則是指樣本中個體的數(shù)目.我們在區(qū)分總體、個體、樣本、樣本容量,這四個概念時(shí),首先找出考查的對象.從而找出總體、個體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【詳解】樣本是被抽取的80名初三學(xué)生的體重,
故選C.【點(diǎn)睛】此題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關(guān)鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大小.樣本容量是樣本中包含的個體的數(shù)目,不能帶單位.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
試題分析:如圖,延長CF交AB于點(diǎn)G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點(diǎn)D是BC中點(diǎn),∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.12、【解析】
可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.13、m>-1【解析】
首先解關(guān)于x和y的方程組,利用m表示出x+y,代入x+y>0即可得到關(guān)于m的不等式,求得m的范圍.【詳解】解:,①+②得1x+1y=1m+4,則x+y=m+1,根據(jù)題意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【點(diǎn)睛】本題考查的是解二元一次方程組和解一元一次不等式,解答此題的關(guān)鍵是把m當(dāng)作已知數(shù)表示出x+y的值,再得到關(guān)于m的不等式.14、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】
根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點(diǎn)睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考常考題型.15、1a1.【解析】
結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積-直角三角形的面積.【詳解】陰影部分的面積=大正方形的面積+小正方形的面積-直角三角形的面積=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案為:1a1.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,關(guān)鍵是列出求陰影部分面積的式子.16、【解析】
先提公因式b,然后再運(yùn)用完全平方公式進(jìn)行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點(diǎn)睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結(jié)構(gòu)特征是解本題的關(guān)鍵.17、.【解析】
作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長最小,作交CF于點(diǎn)F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點(diǎn)G交CF于點(diǎn)M,連接BG交CF于D',則,此時(shí)△BD'E'的周長最小,作交CF于點(diǎn)F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點(diǎn)睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點(diǎn)之間線段最短及軸對稱添加輔助線是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)時(shí),的值最大,【解析】
(1)延長BA、CF交于點(diǎn)G,利用可證△AFG≌△DFC得出,,根據(jù),可證出,得出,利用,,點(diǎn)是的中點(diǎn),得出,,則有,可得出,得出,即可得出結(jié)論;(2)設(shè)BE=x,則,,由勾股定理得出,,得出,求出,由二次函數(shù)的性質(zhì)得出當(dāng)x=1,即BE=1時(shí),CE2-CF2有最大值,,由三角函數(shù)定義即可得出結(jié)果.【詳解】解:(1)證明:如圖,延長交的延長線于點(diǎn),∵為的中點(diǎn),∴.在中,,∴.在和中,∴,∴,,∵.∴,∴,∵,,點(diǎn)是的中點(diǎn),∴,.∴.∴.∴.在中,,又∵,∴.∴(2)設(shè),則,∵,∴,在中,,在中,,∵,∴,∴,∴當(dāng),即時(shí),的值最大,∴.在中,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理、等腰三角形的判定與性質(zhì)等知識;證明三角形全等和等腰三角形是解題的關(guān)鍵.19、甲、乙兩公司人均捐款分別為80元、100元.【解析】試題分析:本題考察的是分式的應(yīng)用題,設(shè)甲公司人均捐款x元,根據(jù)題意列出方程即可.試題解析:設(shè)甲公司人均捐款x元解得:經(jīng)檢驗(yàn),為原方程的根,80+20=100答:甲、乙兩公司人均各捐款為80元、100元.20、【解析】
先根據(jù)分式混合運(yùn)算順序和運(yùn)算法則化簡原式,再解方程組求得a、b的值,繼而代入計(jì)算可得.【詳解】原式=,=,=,解方程組得,所以原式=.【點(diǎn)睛】本題主要考查分式的化簡求值和解二元一次方程組,解題的關(guān)鍵是熟練掌握分式混合運(yùn)算順序和運(yùn)算法則.21、(1)2000;(2)28.8°;(3)補(bǔ)圖見解析;(4)36萬人.【解析】分析:(1)將A選項(xiàng)人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項(xiàng)人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項(xiàng)人數(shù)所占百分比求得其人數(shù),據(jù)此補(bǔ)全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項(xiàng)人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計(jì)圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項(xiàng)的人數(shù)為2000×25%=500,補(bǔ)全條形圖如下:(4)估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?2、(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】
(1)首先用待定系數(shù)法求出拋物線的解析式,然后進(jìn)一步確定點(diǎn)B,C的坐標(biāo).(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當(dāng)0<t≤時(shí),如答圖2所示,此時(shí)重疊部分為一個四邊形;②當(dāng)<t<3時(shí),如答圖3所示,此時(shí)重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點(diǎn)在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點(diǎn)的坐標(biāo)為.如答圖1所示,過點(diǎn)作軸于點(diǎn)M,則,,.過點(diǎn)作于點(diǎn),則,.在中,由勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025便利店智能支付系統(tǒng)引入合同3篇
- 二零二五版游泳教學(xué)服務(wù)合同模板
- 2025年度消防演練場地租賃與組織服務(wù)合同3篇
- 二零二五年度水電設(shè)備調(diào)試與性能檢測合同3篇
- 專業(yè)化電力工程服務(wù)協(xié)議模板2024版
- 二零二五年電子商務(wù)平臺數(shù)據(jù)加密與傳輸安全合同3篇
- 2024消防系統(tǒng)安裝及消防安全培訓(xùn)與演練合同3篇
- 濰坊環(huán)境工程職業(yè)學(xué)院《美術(shù)學(xué)科發(fā)展前沿專題》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024版信用卡貸款服務(wù)合同范本3篇
- 二零二五年度數(shù)據(jù)中心承包協(xié)議及范本2篇
- 產(chǎn)業(yè)鏈治理協(xié)同性
- 閘站監(jiān)理實(shí)施細(xì)則
- 高三課題研究報(bào)告范文
- 2024年初三數(shù)學(xué)競賽考試試題
- 竇性心動過速的危害
- 深基坑工程基坑土方開挖及支護(hù)降水施工方案
- 2024年江西生物科技職業(yè)學(xué)院單招職業(yè)技能測試題庫帶解析答案
- 醫(yī)藥制造企業(yè)資本結(jié)構(gòu)優(yōu)化研究以貴州百靈為例
- GB 31335-2024鐵礦開采和選礦單位產(chǎn)品能源消耗限額
- 醫(yī)院高風(fēng)險(xiǎn)意外事件應(yīng)急措施和救護(hù)機(jī)制
- 橋本甲狀腺炎-90天治療方案
評論
0/150
提交評論