廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省佛山市名校2024屆中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.2.如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為()A.10 B.9 C.8 D.73.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.4.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或125.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.6.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π7.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.28.主席在2018年新年賀詞中指出,2017年,基本醫(yī)療保險已經(jīng)覆蓋1350000000人.將1350000000用科學(xué)記數(shù)法表示為()A.135×107 B.1.35×109 C.13.5×108 D.1.35×10149.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.510.統(tǒng)計學(xué)校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結(jié)果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是12.如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k>0)的圖象經(jīng)過點A(1,2)、B兩點,過點A作x軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點B的坐標(biāo)為___________.13.如圖,△ABC內(nèi)接于⊙O,DA、DC分別切⊙O于A、C兩點,∠ABC=114°,則∠ADC的度數(shù)為_______°.14.為增強學(xué)生身體素質(zhì),提高學(xué)生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.15.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點為(2,m),則=____.16.方程的解為.三、解答題(共8題,共72分)17.(8分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)18.(8分)如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.19.(8分)解方程組.20.(8分)解分式方程:21.(8分)如圖,在直角坐標(biāo)系中,矩形OABC的頂點O與坐標(biāo)原點重合,A、C分別在坐標(biāo)軸上,點B的坐標(biāo)為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.(1)求反比例函數(shù)的解析式;(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標(biāo).22.(10分)某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.若該工廠準(zhǔn)備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?若該工廠新購得65張規(guī)格為的C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______只23.(12分)太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時地面上的點E,標(biāo)桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標(biāo)桿CD向后平移到點C處,這時地面上的點F,標(biāo)桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.24.如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.2、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選D.點睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個正五邊形.3、B【解析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關(guān)鍵.4、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質(zhì);4.三角形三邊關(guān)系;4.分類討論.5、B【解析】

首先解出各個不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.【點睛】解不等式組時要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.6、D【解析】

根據(jù)題意可得到CE=2,然后根據(jù)S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質(zhì)及面積的計算.7、B【解析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.8、B【解析】

科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1350000000用科學(xué)記數(shù)法表示為:1350000000=1.35×109,故選B.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值及n的值.9、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.【點睛】本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.10、B【解析】

根據(jù)加權(quán)平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.?dāng)?shù)據(jù)x1、x2、……、xn的加權(quán)平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權(quán)數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】

當(dāng)CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當(dāng)CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.12、(4,).【解析】

由于函數(shù)y=(x>0常數(shù)k>0)的圖象經(jīng)過點A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.設(shè)B點的橫坐標(biāo)是m,則AC邊上的高是(m-1),根據(jù)三角形的面積公式得到關(guān)于m的方程,從而求出,然后把m的值代入y=,即可求得B的縱坐標(biāo),最后就求出了點B的坐標(biāo).【詳解】∵函數(shù)y=(x>0、常數(shù)k>0)的圖象經(jīng)過點A(1,1),∴把(1,1)代入解析式得到1=,∴k=1,設(shè)B點的橫坐標(biāo)是m,則AC邊上的高是(m-1),∵AC=1∴根據(jù)三角形的面積公式得到×1?(m-1)=3,∴m=4,把m=4代入y=,∴B的縱坐標(biāo)是,∴點B的坐標(biāo)是(4,).故答案為(4,).【點睛】解答本題的關(guān)鍵是根據(jù)已知坐標(biāo)系中點的坐標(biāo),可以表示圖形中線段的長度.根據(jù)三角形的面積公式即可解答.13、48°【解析】

如圖,在⊙O上取一點K,連接AK、KC、OA、OC,由圓的內(nèi)接四邊形的性質(zhì)可求出∠AKC的度數(shù),利用圓周角定理可求出∠AOC的度數(shù),由切線性質(zhì)可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.【詳解】如圖,在⊙O上取一點K,連接AK、KC、OA、OC.∵四邊形AKCB內(nèi)接于圓,∴∠AKC+∠ABC=180°,∵∠ABC=114°,∴∠AKC=66°,∴∠AOC=2∠AKC=132°,∵DA、DC分別切⊙O于A、C兩點,∴∠OAD=∠OCB=90°,∴∠ADC+∠AOC=180°,∴∠ADC=48°故答案為48°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、周角定理及切線性質(zhì),圓內(nèi)接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半;圓的切線垂直于過切點的直徑;熟練掌握相關(guān)知識是解題關(guān)鍵.14、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.15、4【解析】

利用交點(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點睛】本題主要考查了函數(shù)的交點問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.16、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經(jīng)檢驗,是原方程的根.三、解答題(共8題,共72分)17、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計方案不滿足安全要求”.【詳解】解:施工方提供的設(shè)計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計方案不滿足安全要求.18、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點:2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.19、或.【解析】

把y=x代入,解得x的值,然后即可求出y的值;【詳解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,當(dāng)x=﹣2時,y=﹣2,當(dāng)x=1時,y=1,∴原方程組的解是或.【點睛】本題考查了高次方程的解法,關(guān)鍵是用代入法先求出一個未知數(shù),再代入求出另一個未知數(shù).20、無解【解析】

首先進行去分母,將分式方程轉(zhuǎn)化為整式方程,然后按照整式方程的求解方法進行求解,最后對所求的解進行檢驗,看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號,得:+2x-+4=8移項、合并同類項得:2x=4解得:x=2經(jīng)檢驗,x=2是方程的增根∴方程無解【點睛】本題考查解分式方程,注意分式方程結(jié)果要檢驗.21、(1);(2)點P的坐標(biāo)是(0,4)或(0,-4).【解析】

(1)求出OA=BC=2,將y=2代入求出x=2,得出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案.(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標(biāo).【詳解】(1)∵B(4,2),四邊形OABC是矩形,∴OA=BC=2.將y=2代入3得:x=2,∴M(2,2).把M的坐標(biāo)代入得:k=4,∴反比例函數(shù)的解析式是;(2).∵△OPM的面積與四邊形BMON的面積相等,∴.∵AM=2,∴OP=4.∴點P的坐標(biāo)是(0,4)或(0,-4).22、(1)最多可以做25只豎式箱子;(2)能制作豎式、橫式兩種無蓋箱子分別為5只和30只;(3)47或1.【解析】

表示出豎式箱子所用板材數(shù)量進而得出總金額即可得出答案;設(shè)制作豎式箱子a只,橫式箱子b只,利用A型板材65張、B型板材110張,得出方程組求出答案;設(shè)裁剪出B型板材m張,則可裁A型板材張,進而得出方程組求出符合題意的答案.【詳解】解:設(shè)最多可制作豎式箱子x只,則A型板材x張,B型板材4x張,根據(jù)題意得解得.答:最多可以做25只豎式箱子.設(shè)制作豎式箱子a只,橫式箱子b只,根據(jù)題意,得,解得:.答:能制作豎式、橫式兩種無蓋箱子分別為5只和30只.設(shè)裁剪出B型板材m張,則可裁A型板材張,由題意得:,整理得,,.豎式箱子不少于20只,或22,這時,或,.則能制作兩種箱子共:或.故答案為47或1.【點睛】本題考查了一元一次不等式的應(yīng)用以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是理解題意,列出等式.23、55米【解析】

由題意可知△EDC∽△EBA,△FHC∽△FBA,根據(jù)相似三角形的性質(zhì)可得,又DC=H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論