2023-2024學年北京一零一中學中考考前最后一卷數學試卷含解析_第1頁
2023-2024學年北京一零一中學中考考前最后一卷數學試卷含解析_第2頁
2023-2024學年北京一零一中學中考考前最后一卷數學試卷含解析_第3頁
2023-2024學年北京一零一中學中考考前最后一卷數學試卷含解析_第4頁
2023-2024學年北京一零一中學中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年北京一零一中學中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.化簡的結果是()A.1 B. C. D.2.下列說法錯誤的是()A.的相反數是2 B.3的倒數是C. D.,0,4這三個數中最小的數是03.如圖是嬰兒車的平面示意圖,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度數為()A.80° B.90° C.100° D.102°4.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b25.若ab<0,則正比例函數y=ax與反比例函數y=在同一坐標系中的大致圖象可能是()A. B. C. D.6.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.17.某校今年共畢業(yè)生297人,其中女生人數為男生人數的65%,則該校今年的女畢業(yè)生有()A.180人B.117人C.215人D.257人8.下列圖形中,是正方體表面展開圖的是()A. B. C. D.9.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.1210.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.32二、填空題(本大題共6個小題,每小題3分,共18分)11.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數根,則a的取值范圍為________.12.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.13.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.14.受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展.預計達州市2018年快遞業(yè)務量將達到5.5億件,數據5.5億用科學記數法表示為_____.15.如圖,在每個小正方形的邊長為1的網格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.16.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復試驗后發(fā)現,摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,一次函數的圖象分別交x軸、y軸于A、B兩點,與反比例函數的圖象交于C、D兩點.已知點C的坐標是(6,-1),D(n,3).求m的值和點D的坐標.求的值.根據圖象直接寫出:當x為何值時,一次函數的值大于反比例函數的值?18.(8分)我市某企業(yè)接到一批產品的生產任務,按要求必須在14天內完成.已知每件產品的出廠價為60元.工人甲第x天生產的產品數量為y件,y與x滿足如下關系:工人甲第幾天生產的產品數量為70件?設第x天生產的產品成本為P元/件,P與的函數圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數關系式,并求出第幾天時利潤最大,最大利潤是多少?19.(8分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、?。┲?,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.20.(8分)如圖,在?ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.(1)求證:四邊形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的長.21.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.22.(10分)已知,如圖所示直線y=kx+2(k≠0)與反比例函數y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,(1)求一次函數的解析式.(2)若AC是△PCB的中線,求反比例函數的關系式.23.(12分)如圖,在矩形ABCD中,AB=1DA,以點A為圓心,AB為半徑的圓弧交DC于點E,交AD的延長線于點F,設DA=1.求線段EC的長;求圖中陰影部分的面積.24.在抗洪搶險救災中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉移到沒有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數關系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】原式=?(x–1)2+=+==1,故選A.2、D【解析】試題分析:﹣2的相反數是2,A正確;3的倒數是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數中最小的數是﹣11,D錯誤,故選D.考點:1.相反數;2.倒數;3.有理數大小比較;4.有理數的減法.3、A【解析】分析:根據平行線性質求出∠A,根據三角形內角和定理得出∠2=180°∠1?∠A,代入求出即可.詳解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1?∠A=80°,故選:A.點睛:本題考查了平行線的性質:兩直線平行,內錯角相等.三角形內角和定理:三角形內角和為180°.4、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D5、D【解析】

根據ab<0及正比例函數與反比例函數圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數y=ax數的圖象過原點、第一、三象限,反比例函數圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數的圖象過原點、第二、四象限,反比例函數圖象在第一、三象限,選項D符合.故選D【點睛】本題主要考查了反比例函數的圖象性質和正比例函數的圖象性質,要掌握它們的性質才能靈活解題.6、D【解析】

本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.7、B【解析】

設男生為x人,則女生有65%x人,根據今年共畢業(yè)生297人列方程求解即可.【詳解】設男生為x人,則女生有65%x人,由題意得,x+65%x=297,解之得x=180,297-180=117人.故選B.【點睛】本題考查了一元一次方程的應用,根據題意找出等量關系列出方程是解答本題的關鍵.8、C【解析】

利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.9、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質和等腰直角三角形的性質.10、B【解析】

根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、a≤且a≠1.【解析】

根據一元二次方程有實數根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據題意列出關于a的不等式組是解答此題的關鍵.12、1.【解析】

根據題意分析可得:第1個圖案中棋子的個數5個,第2個圖案中棋子的個數5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數.【詳解】根據題意分析可得:第1個圖案中棋子的個數5個.第2個圖案中棋子的個數5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數為5+29×6=1個.故答案為1.【點睛】考核知識點:圖形的規(guī)律.分析出一般數量關系是關鍵.13、1【解析】

利用對稱性可設出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數與正方形和三角形面積的運用,表示出E和F的坐標是關鍵.14、5.5×1.【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.15、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.16、3【解析】

在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出等式解答.【詳解】解:根據題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關鍵是要知道在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.三、解答題(共8題,共72分)17、(1)m=-6,點D的坐標為(-2,3);(2);(3)當或時,一次函數的值大于反比例函數的值.【解析】

(1)將點C的坐標(6,-1)代入即可求出m,再把D(n,3)代入反比例函數解析式求出n即可.(2)根據C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點即可,得出OA、OB的長,再根據銳角三角函數的定義即可求得;(3)根據函數的圖象和交點坐標即可求得.【詳解】⑴把C(6,-1)代入,得.則反比例函數的解析式為,把代入,得,∴點D的坐標為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數的解析式為,∴點B的坐標為(0,2),點A的坐標為(4,0).∴,在在中,∴.⑶根據函數圖象可知,當或時,一次函數的值大于反比例函數的值【點睛】此題考查了反比例函數與一次函數的交點問題.其知識點有解直角三角形,待定系數法求解析式,此題難度適中,注意掌握數形結合思想與方程思想的應用.18、(1)工人甲第12天生產的產品數量為70件;(2)第11天時,利潤最大,最大利潤是845元.【解析】分析:(1)根據y=70求得x即可;(2)先根據函數圖象求得P關于x的函數解析式,再結合x的范圍分類討論,根據“總利潤=單件利潤×銷售量”列出函數解析式,由二次函數的性質求得最值即可.本題解析:解:(1)若7.5x=70,得x=>4,不符合題意;則5x+10=70,解得x=12.答:工人甲第12天生產的產品數量為70件.(2)由函數圖象知,當0≤x≤4時,P=40,當4<x≤14時,設P=kx+b,將(4,40)、(14,50)代入,得解得∴P=x+36.①當0≤x≤4時,W=(60-40)·7.5x=150x,∵W隨x的增大而增大,∴當x=4時,W最大=600;②當4<x≤14時,W=(60-x-36)(5x+10)=-5x2+110x+240=-5(x-11)2+845,∴當x=11時,W最大=845.∵845>600,∴當x=11時,W取得最大值845元.答:第11天時,利潤最大,最大利潤是845元.點睛:本題考查了一次函數的應用、二次函數的應用,解題的關鍵是理解題意,記住利潤=出廠價-成本,學會利用函數的性質解決最值問題.19、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到甲和乙的結果數,然后根據概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數共有140人;(4)畫樹狀圖如下:共12種等可能的結果數,其中恰好抽到甲和乙的結果數為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.20、(1)見解析;(2)2【解析】

(1)方法一:連接AC,利用角平分線判定定理,證明DA=DC即可;方法二:只要證明△AEB≌△AFD.可得AB=AD即可解決問題;(2)在Rt△ACF,根據AF=CF·tan∠ACF計算即可.【詳解】(1)證法一:連接AC,如圖.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四邊形ABCD是菱形.證法二:如圖,∵四邊形ABCD是平行四邊形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四邊形ABCD是菱形.(2)連接AC,如圖.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四邊形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF?tan∠ACF=2.【點睛】本題主要考查三角形的性質及三角函數的相關知識,充分利用已知條件靈活運用各種方法求解可得到答案。21、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據30°所對的直角邊等于斜邊的一半可得:根據“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.22、(2)y=2x+2;(2)y=.【解析】

(2)由cos∠ABO=,可得到tan∠ABO=2,從而可得到k=2;(2)先求得A、B的坐標,然后依據中點坐標公式可求得點P的坐標,將點P的坐標代入反比例函數的解析式可求得m的值.【詳解】(2)∵cos∠ABO=,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2∴一次函數的解析式為y=2x+2.(2)當x=0時,y=2,∴A(0,2).當y=0時,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中線,∴P(2,4)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論