版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省湄潭縣2023-2024學年中考數(shù)學適應性模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據,下列說法錯誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是2.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°3.如圖,比例規(guī)是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規(guī)的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm4.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定5.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°6.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.37.如圖,在矩形紙片ABCD中,已知AB=,BC=1,點E在邊CD上移動,連接AE,將多邊形ABCE沿直線AE折疊,得到多邊形AFGE,點B、C的對應點分別為點F、G.在點E從點C移動到點D的過程中,則點F運動的路徑長為()A.π B.π C.π D.π8.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.9.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.210.如圖,AB∥CD,DE⊥CE,∠1=34°,則∠DCE的度數(shù)為()A.34° B.56° C.66° D.54°11.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④12.鄭州某中學在備考2018河南中考體育的過程中抽取該校九年級20名男生進行立定跳遠測試,以便知道下一階段的體育訓練,成績如下所示:成績(單位:米)2.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運動員成績的眾數(shù)是5B.這些運動員成績的中位數(shù)是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.0725二、填空題:(本大題共6個小題,每小題4分,共24分.)13.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.14.關于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.15.直線AB,BC,CA的位置關系如圖所示,則下列語句:①點A在直線BC上;②直線AB經過點C;③直線AB,BC,CA兩兩相交;④點B是直線AB,BC,CA的公共點,正確的有_____(只填寫序號).16.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.17.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.18.已知A(x1,y1),B(x2,y2)都在反比例函數(shù)y=的圖象上.若x1x2=﹣4,則y1y2的值為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了5元.求第一批悠悠球每套的進價是多少元;如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?20.(6分)石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節(jié),商店決定采取適當?shù)慕祪r措施,以擴大銷售量,增加利潤,經市場調查發(fā)現(xiàn),如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數(shù)式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.21.(6分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)22.(8分)如圖,港口B位于港口A的南偏東37°方向,燈塔C恰好在AB的中點處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達E處,測得燈塔C在北偏東45°方向上,這時,E處距離港口A有多遠?(參考數(shù)據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.(8分)某學校為弘揚中國傳統(tǒng)詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統(tǒng)計結果繪制成兩幅如圖所示的統(tǒng)計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計所抽查測試學生成績數(shù)據的平均數(shù)、眾數(shù)和中位數(shù).24.(10分)若兩個不重合的二次函數(shù)圖象關于軸對稱,則稱這兩個二次函數(shù)為“關于軸對稱的二次函數(shù)”.(1)請寫出兩個“關于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).25.(10分)化簡(),并說明原代數(shù)式的值能否等于-1.26.(12分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設甲的騎行時間為x(h)(0≤x≤2)(1)根據題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關于x的函數(shù)解析式;(3)設甲,乙兩人之間的距離為y,當y=12時,求x的值.27.(12分)有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:根據眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做這組數(shù)據的眾數(shù).將一組數(shù)據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù);如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).平均數(shù)是指在一組數(shù)據中所有數(shù)據之和再除以數(shù)據的個數(shù).一般地設n個數(shù)據,x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數(shù)據:3,4,5,6,6,6,中位數(shù)是5.5,故選C考點:1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)2、B【解析】
先根據圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據三角形內角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【點睛】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.3、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.4、A【解析】
若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.5、A【解析】試題分析:根據五邊形的內角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內角與外角;三角形內角和定理.6、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標特征可得出k=±1,再利用正比例函數(shù)的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征以及正比例函數(shù)的性質,利用一次函數(shù)圖象上點的坐標特征,找出k=±1是解題的關鍵.7、D【解析】
點F的運動路徑的長為弧FF'的長,求出圓心角、半徑即可解決問題.【詳解】如圖,點F的運動路徑的長為弧FF'的長,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的長=.故選D.【點睛】本題考查了矩形的性質、特殊角的三角函數(shù)值、含30°角的直角三角形的性質、弧長公式等知識,解題的關鍵是判斷出點F運動的路徑.8、B【解析】
如圖所示,過O點作a的平行線d,根據平行線的性質得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質.9、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點睛】本題考查了等邊三角形的性質和扇形的面積計算,能根據圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.10、B【解析】試題分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故選B.考點:平行線的性質.11、B【解析】根據中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關于點A中心對稱。故選B。12、B【解析】
根據方差、平均數(shù)、中位數(shù)和眾數(shù)的計算公式和定義分別對每一項進行分析,即可得出答案.【詳解】由表格中數(shù)據可得:A、這些運動員成績的眾數(shù)是2.35,錯誤;B、這些運動員成績的中位數(shù)是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.【點睛】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計算公式是本題的關鍵,平均數(shù)平均數(shù)表示一組數(shù)據的平均程度.中位數(shù)是將一組數(shù)據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據波動大小的量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解析】
變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【點睛】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.14、1【解析】
先根據根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關系是解題的關鍵.15、③【解析】
根據直線與點的位置關系即可求解.【詳解】①點A在直線BC上是錯誤的;②直線AB經過點C是錯誤的;③直線AB,BC,CA兩兩相交是正確的;④點B是直線AB,BC,CA的公共點是錯誤的.故答案為③.【點睛】本題考查了直線、射線、線段,關鍵是熟練掌握直線、射線、線段的定義.16、1【解析】
根據題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據可得答案.【詳解】根據題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據可得DC2=31,DC=1,故答案為1.17、1【解析】
先由DE∥BC,可證得△ADE∽△ABC,進而可根據相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質和判定,關鍵是求出相似后得出比例式,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.18、﹣1.【解析】
根據反比例函數(shù)圖象上點的坐標特征得到再把它們相乘,然后把代入計算即可.【詳解】根據題意得所以故答案為:?1.【點睛】考查反比例函數(shù)圖象上點的坐標特征,把點的坐標代入反比例函數(shù)解析式得到是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)第一批悠悠球每套的進價是25元;(2)每套悠悠球的售價至少是1元.【解析】分析:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據數(shù)量=總價÷單價結合第二批購進數(shù)量是第一批數(shù)量的1.5倍,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設每套悠悠球的售價為y元,根據銷售收入-成本=利潤結合全部售完后總利潤不低于25%,即可得出關于y的一元一次不等式,解之取其中的最小值即可得出結論.詳解:(1)設第一批悠悠球每套的進價是x元,則第二批悠悠球每套的進價是(x+5)元,根據題意得:,解得:x=25,經檢驗,x=25是原分式方程的解.答:第一批悠悠球每套的進價是25元.(2)設每套悠悠球的售價為y元,根據題意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售價至少是1元.點睛:本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程是解題的關鍵;(2)根據各數(shù)量之間的關系,正確列出一元一次不等式.20、(1)(20+2x),(40﹣x);(2)每件童裝降價20元或10元,平均每天贏利1200元;(3)不可能做到平均每天盈利2000元.【解析】
(1)、根據銷售量=原銷售量+因價格下降而增加的數(shù)量;每件利潤=原售價-進價-降價,列式即可;(2)、根據總利潤=單件利潤×數(shù)量,列出方程即可;(3)、根據(2)中的相關關系方程,判斷方程是否有實數(shù)根即可.【詳解】(1)、設每件童裝降價x元時,每天可銷售20+2x件,每件盈利40-x元,
故答案為(20+2x),(40-x);(2)、根據題意可得:(20+2x)(40-x)=1200,解得:即每件童裝降價10元或20元時,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000,,∵此方程無解,∴不可能盈利2000元.【點睛】本題主要考查的是一元二次方程的實際應用問題,屬于中等難度題型.解決這個問題的關鍵就是要根據題意列出方程.21、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.22、35km【解析】試題分析:如圖作CH⊥AD于H.設CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解決問題.試題解析:如圖,作CH⊥AD于H.設CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E處距離港口A有35km.23、(1)50、2;(2)平均數(shù)是7.11;眾數(shù)是1;中位數(shù)是1.【解析】
(1)根據A等級人數(shù)及其百分比可得總人數(shù),用C等級人數(shù)除以總人數(shù)可得a的值;(2)根據平均數(shù)、眾數(shù)、中位數(shù)的定義計算可得.【詳解】(1)本次抽查測試的學生人數(shù)為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統(tǒng)計圖,平均數(shù)為=7.11.∵在這組數(shù)據中,1出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據的眾數(shù)是1.∵將這組數(shù)據從小到大的順序排列,其中處于中間的兩個數(shù)都是1,∴=1,∴這組數(shù)據的中位數(shù)是1.【點睛】本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據叫做這組數(shù)據的眾數(shù).將一組數(shù)據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù);如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).平均數(shù)是指在一組數(shù)據中所有數(shù)據之和再除以數(shù)據的個數(shù).24、(1)任意寫出兩個符合題意的答案,如:;(2),頂點坐標為【解析】
(1)根據關于y軸對稱的二次函數(shù)的特點,只要兩個函數(shù)的頂點坐標根據y軸對稱即可;
(2)根據函數(shù)的特點得出a=m,--=0,,進一步得出m=a,n=-b,p=c,從而得到y(tǒng)1+y2=2ax2+2c,根據關系式即可得到頂點坐標.【詳解】解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“關于y軸對稱的二次函數(shù)”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
則y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函數(shù)y1+y2的頂點坐標為(0,2c).【點睛】本題考查了二次函數(shù)的圖象與幾何變換,得出變換的規(guī)律是解題的關鍵.25、見解析【解析】
先根據分式的混合運算順序和運算法則化簡原式,若原代數(shù)式的值為﹣1,則=﹣1,截至求得x的值,再根據分式有意義的條件即可作出判斷.【詳解】原式=[===,若原代數(shù)式的值為﹣1,則=﹣1,解得:x=0,因為x=0時,原式沒有意義,所以原代數(shù)式的值不能等于﹣1.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解題的關鍵.26、(1)18,2,20(2)(3)當y=12時,x的值是1.2或1.6【解析】
(Ⅰ)根據路程、時間、速度三者間的關系通過計算即可求得相應答案;(Ⅱ)根據路程=速度×時間結合甲、乙的速度以及時間范圍即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)生態(tài)研究貸款合同模板
- 臨時工戶外探險協(xié)議
- 倉儲物流場地平整服務協(xié)議
- 個人放棄社保協(xié)議書
- 臨沂演出旅游行業(yè)勞動合同樣本
- 不帶花園公寓租賃合同模板
- 二手房購房協(xié)議書慈善用途
- 臨時隔離點傳染病防控管理制度
- 個人高息小額大額借款協(xié)議書
- 個人長期借款協(xié)議
- 常見上市公司名稱證券名稱中英對照表
- 第三次全國國土調查工作分類與三大地類對照表
- 確定積極分子會議記錄范文七篇
- 零部件英文縮寫及零部件中英文對照
- 血源性病原體職業(yè)接觸防護導則
- 煉鋼廠6機6流小方坯連鑄機技術操作規(guī)程
- 跌倒的護理 (養(yǎng)老護理員培訓課件)
- 統(tǒng)編教學小學語文課外閱讀《細菌世界歷險記》導讀課課件
- 【課件】比的基本性質
- 小學英語人教新起點五年級上冊Unit3Animalsunit3storytime
- 2023年江蘇省淮安市中考化學試卷
評論
0/150
提交評論