山東省市級名校2023-2024學年中考適應性考試數(shù)學試題含解析_第1頁
山東省市級名校2023-2024學年中考適應性考試數(shù)學試題含解析_第2頁
山東省市級名校2023-2024學年中考適應性考試數(shù)學試題含解析_第3頁
山東省市級名校2023-2024學年中考適應性考試數(shù)學試題含解析_第4頁
山東省市級名校2023-2024學年中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省市級名校2023-2024學年中考適應性考試數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關于x的一元二次方程的兩實數(shù)根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=32.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.3.在函數(shù)y=中,自變量x的取值范圍是()A.x≥0 B.x≤0 C.x=0 D.任意實數(shù)4.吉林市面積約為27100平方公里,將27100這個數(shù)用科學記數(shù)法表示為()A.27.1×102B.2.71×103C.2.71×104D.0.271×1055.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°6.在平面直角坐標系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.7.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-28.姜老師給出一個函數(shù)表達式,甲、乙、丙三位同學分別正確指出了這個函數(shù)的一個性質.甲:函數(shù)圖像經(jīng)過第一象限;乙:函數(shù)圖像經(jīng)過第三象限;丙:在每一個象限內,y值隨x值的增大而減?。鶕?jù)他們的描述,姜老師給出的這個函數(shù)表達式可能是()A. B. C. D.9.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數(shù)是()A.1 B.2 C.3 D.410.下列四個圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.11.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣312.一個幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在四邊形ABCD中,對角線AC,BD交于點O,OA=OC,OB=OD,添加一個條件使四邊形ABCD是菱形,那么所添加的條件可以是___________(寫出一個即可).14.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.15.如圖,如果兩個相似多邊形任意一組對應頂點P、P′所在的直線都是經(jīng)過同一點O,且有OP′=k·OP(k≠0),那么我們把這樣的兩個多邊形叫位似多邊形,點O叫做位似中心,已知△ABC與△A′B′C′是關于點O的位似三角形,OA′=3OA,則△ABC與△A′B′C′的周長之比是________.16.因式分解:9a2﹣12a+4=______.17.為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據(jù)題意,可列方程為_____.18.用4塊完全相同的長方形拼成正方形(如圖),用不同的方法,計算圖中陰影部分的面積,可得到1個關于的等式為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.20.(6分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.21.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.(1)求證:直線CE是⊙O的切線.(2)若BC=3,CD=3,求弦AD的長.22.(8分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結果保留π).23.(8分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?24.(10分)某調查小組采用簡單隨機抽樣方法,對某市部分中小學生一天中陽光體育運動時間進行了抽樣調查,并把所得數(shù)據(jù)整理后繪制成如下的統(tǒng)計圖:(1)該調查小組抽取的樣本容量是多少?(2)求樣本學生中陽光體育運動時間為1.5小時的人數(shù),并補全占頻數(shù)分布直方圖;(3)請估計該市中小學生一天中陽光體育運動的平均時間.25.(10分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.26.(12分)已知關于的二次函數(shù)(1)當時,求該函數(shù)圖像的頂點坐標.(2)在(1)條件下,為該函數(shù)圖像上的一點,若關于原點的對稱點也落在該函數(shù)圖像上,求的值(3)當函數(shù)的圖像經(jīng)過點(1,0)時,若是該函數(shù)圖像上的兩點,試比較與的大小.27.(12分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F(xiàn),且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:∵二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),∴.∴.故選B.2、D【解析】

根據(jù)菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.3、C【解析】

當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).據(jù)此可得.【詳解】解:根據(jù)題意知,

解得:x=0,

故選:C.【點睛】本題主要考查函數(shù)自變量的取值范圍,函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)為非負數(shù).4、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將27100用科學記數(shù)法表示為:.2.71×104.故選:C.【點睛】本題考查科學記數(shù)法—表示較大的數(shù)。5、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.6、B【解析】

根據(jù)題目給出的二次函數(shù)的表達式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質,解題的關鍵是熟練掌握二次函數(shù)性質.7、C【解析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?、B【解析】y=3x的圖象經(jīng)過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.9、B【解析】

由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.【點睛】本題主要考查二次函數(shù)的圖象和性質.熟練掌握圖象與系數(shù)的關系以及二次函數(shù)與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.10、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、A【解析】

根據(jù)一元二次方程根與系數(shù)的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=12、D【解析】

根據(jù)三視圖知該幾何體是一個半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點睛】本題主要考查由三視圖判斷幾何體,解題的關鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關計算.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四邊形ABCD是平行四邊形,再根據(jù)菱形的判定定理添加鄰邊相等或對角線垂直即可判定該四邊形是菱形.所以添加條件AB=AD或BC=CD或AC⊥BD,本題答案不唯一,符合條件即可.14、1【解析】

根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質,正確添加輔助線,得出△AOD∽△OCE是解題關鍵.15、1:1【解析】分析:根據(jù)相似三角形的周長比等于相似比解答.詳解:∵△ABC與△A′B′C′是關于點O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC與△A′B′C′的周長之比是:OA:OA′=1:1.故答案為1:1.點睛:本題考查的是位似變換的性質,位似變換的性質:①兩個圖形必須是相似形;②對應點的連線都經(jīng)過同一點;③對應邊平行.16、(3a﹣1)1【解析】

直接利用完全平方公式分解因式得出答案.【詳解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【點睛】考查了公式法分解因式,正確運用公式是解題關鍵.17、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.18、(a+b)2﹣(a﹣b)2=4ab【解析】

根據(jù)長方形面積公式列①式,根據(jù)面積差列②式,得出結論.【詳解】S陰影=4S長方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點睛】本題考查了完全平方公式幾何意義的理解,此題有機地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.20、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等邊三角形,從而得到OB=OA=2,則BD=4,最后在Rt△ABD中,由勾股定理可解得AD的長.試題解析:∵四邊形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等邊三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.21、(1)證明見解析(2)【解析】

(1)連結OC,如圖,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,則∠3=∠2,于是可判斷OD∥AE,根據(jù)平行線的性質得OD⊥CE,然后根據(jù)切線的判定定理得到結論;(2)由△CDB∽△CAD,可得,推出CD2=CB?CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解決問題.【詳解】(1)證明:連結OC,如圖,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切線;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB?CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,設BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.22、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.23、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(jù)(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關系式;(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數(shù)越多時,利潤變?。耶攛=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現(xiàn)了賣46只賺的錢比賣1只賺的錢多的現(xiàn)象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數(shù)的應用;二次函數(shù)的最值;最值問題;分段函數(shù);分類討論.24、(4)500;(4)440,作圖見試題解析;(4)4.4.【解析】

(4)利用0.5小時的人數(shù)除以其所占比例,即可求出樣本容量;(4)利用樣本容量乘以4.5小時的百分數(shù),即可求出4.5小時的人數(shù),畫圖即可;(4)計算出該市中小學生一天中陽光體育運動的平均時間即可.【詳解】解:(4)由題意可得:0.5小時的人數(shù)為:400人,所占比例為:40%,∴本次調查共抽樣了500名學生;(4)4.5小時的人數(shù)為:500×4.4=440(人),如圖所示:(4)根據(jù)題意得:=4.4,即該市中小學生一天中陽光體育運動的平均時間為4.4小時.考點:4.頻數(shù)(率)分布直方圖;4.扇形統(tǒng)計圖;4.加權平均數(shù).25、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數(shù),再找出一個徑賽項目和一個田賽項目的結果數(shù),然后根據(jù)概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數(shù),然后根據(jù)概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論