版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
陜西省西安市高新一中學(xué)2023-2024學(xué)年中考猜題數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.扇形的半徑為30cm,圓心角為120°,用它做成一個(gè)圓錐的側(cè)面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm2.如圖,一個(gè)斜邊長為10cm的紅色三角形紙片,一個(gè)斜邊長為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm23.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°4.一個(gè)六邊形的六個(gè)內(nèi)角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個(gè)六邊形的周長是()A.13 B.14 C.15 D.165.某校體育節(jié)有13名同學(xué)參加女子百米賽跑,它們預(yù)賽的成績各不相同,取前6名參加決賽.小穎已經(jīng)知道了自己的成績,她想知道自己能否進(jìn)入決賽,還需要知道這13名同學(xué)成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)6.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結(jié)論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.7.在一個(gè)不透明的袋子中裝有除顏色外其余均相同的m個(gè)小球,其中5個(gè)黑球,從袋中隨機(jī)摸出一球,記下其顏色,這稱為依次摸球試驗(yàn),之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計(jì)算機(jī)模擬的摸球試驗(yàn)次數(shù)與摸出黑球次數(shù)的列表:摸球試驗(yàn)次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計(jì)出m的值是()A.5 B.10 C.15 D.208.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(,4),則△AOC的面積為A.12 B.9 C.6 D.49.若式子在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣110.如圖所示,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),把△BEC繞點(diǎn)C旋轉(zhuǎn)至△DFC位置,則∠EFC的度數(shù)是()A.90° B.30° C.45° D.60°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖是我區(qū)某一天內(nèi)的氣溫變化圖,結(jié)合該圖給出的信息寫出一個(gè)正確的結(jié)論:________.12.一般地,當(dāng)α、β為任意角時(shí),sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.13.分解因式:x2y﹣6xy+9y=_____.14.已知一個(gè)正多邊形的內(nèi)角和是外角和的3倍,那么這個(gè)正多邊形的每個(gè)內(nèi)角是_____度.15.將一張長方形紙片折疊成如圖所示的形狀,若∠DBC=56°,則∠1=_____°.16.如圖,已知在平行四邊形ABCD中,E是邊AB的中點(diǎn),F(xiàn)在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.三、解答題(共8題,共72分)17.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.18.(8分)三輛汽車經(jīng)過某收費(fèi)站下高速時(shí),在2個(gè)收費(fèi)通道A,B中,可隨機(jī)選擇其中的一個(gè)通過.(1)三輛汽車經(jīng)過此收費(fèi)站時(shí),都選擇A通道通過的概率是;(2)求三輛汽車經(jīng)過此收費(fèi)站時(shí),至少有兩輛汽車選擇B通道通過的概率.19.(8分)某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生對五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)不完整統(tǒng)計(jì)圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補(bǔ)全條形統(tǒng)計(jì)圖(3)扇形統(tǒng)計(jì)圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請估計(jì)該校最喜愛兩類校本課程的學(xué)生約共有多少名.20.(8分)將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是_____;先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請用畫樹狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.21.(8分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.判斷AF與⊙O的位置關(guān)系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.22.(10分)計(jì)算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.23.(12分)如圖,AB=16,O為AB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點(diǎn)P,Q,且點(diǎn)P,Q在AB異側(cè),連接OP.求證:AP=BQ;當(dāng)BQ=時(shí),求的長(結(jié)果保留);若△APO的外心在扇形COD的內(nèi)部,求OC的取值范圍.24.在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點(diǎn)A(3,a-2).(1)求a,b的值;(2)直線l2:y=-x+m與x軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點(diǎn):圓錐的計(jì)算.2、D【解析】
標(biāo)注字母,根據(jù)兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據(jù)相似三角形對應(yīng)邊成比例求出,即,設(shè)BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據(jù)紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積計(jì)算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設(shè)BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍(lán)兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.【點(diǎn)睛】本題考查根據(jù)相似三角形的性質(zhì)求出直角三角形的兩直角邊,利用紅、藍(lán)兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關(guān)鍵.3、C【解析】
先根據(jù)平行線的性質(zhì)得出∠CBE=∠E=60°,再根據(jù)三角形的外角性質(zhì)求出∠C的度數(shù)即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì)、三角形外角的性質(zhì),熟練掌握三角形外角的性質(zhì)是解題的關(guān)鍵.4、C【解析】
解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點(diǎn)G、H、I.因?yàn)榱呅蜛BCDEF的六個(gè)角都是120°,所以六邊形ABCDEF的每一個(gè)外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.5、C【解析】13個(gè)不同的分?jǐn)?shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個(gè)數(shù),故只要知道自己的分?jǐn)?shù)和中位數(shù)就可以知道是否獲獎(jiǎng)了.故選C.6、B【解析】
根據(jù)垂徑定理及圓周角定理進(jìn)行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點(diǎn)E不一定是OB的中點(diǎn),∴OE與BE的關(guān)系不能確定,故B錯(cuò)誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點(diǎn)睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.7、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球?qū)嶒?yàn)次數(shù)的值總是在0.5左右,則由題意可得5故選擇B.【點(diǎn)睛】本題考查了概率公式的應(yīng)用.8、B【解析】∵點(diǎn),是中點(diǎn)∴點(diǎn)坐標(biāo)∵在雙曲線上,代入可得∴∵點(diǎn)在直角邊上,而直線邊與軸垂直∴點(diǎn)的橫坐標(biāo)為-6又∵點(diǎn)在雙曲線∴點(diǎn)坐標(biāo)為∴從而,故選B9、A【解析】
直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實(shí)數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點(diǎn)睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關(guān)鍵.10、C【解析】
根據(jù)正方形的每一個(gè)角都是直角可得∠BCD=90°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點(diǎn)C旋轉(zhuǎn)至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.【點(diǎn)睛】本題目是一道考查旋轉(zhuǎn)的性質(zhì)問題——每對對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的連線的夾角都等于旋轉(zhuǎn)角度,每對對應(yīng)邊相等,故為等腰直角三角形.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、這一天的最高氣溫約是26°【解析】
根據(jù)我區(qū)某一天內(nèi)的氣溫變化圖,分析變化趨勢和具體數(shù)值,即可求出答案.【詳解】解:根據(jù)圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【點(diǎn)睛】本題考查的是函數(shù)圖象問題,統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.12、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點(diǎn):特殊角的三角函數(shù)值;新定義.13、y(x﹣3)2【解析】本題考查因式分解.解答:.14、1.【解析】
先由多邊形的內(nèi)角和和外角和的關(guān)系判斷出多邊形的邊數(shù),即可得到結(jié)論.【詳解】設(shè)多邊形的邊數(shù)為n.因?yàn)檎噙呅蝺?nèi)角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個(gè)正多邊形的每個(gè)外角=360則這個(gè)正多邊形的每個(gè)內(nèi)角是180°故答案為:1.【點(diǎn)睛】考查多邊形的內(nèi)角和與外角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.15、62【解析】
根據(jù)折疊的性質(zhì)得出∠2=∠ABD,利用平角的定義解答即可.【詳解】解:如圖所示:由折疊可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案為62.【點(diǎn)睛】本題考查了折疊變換的知識(shí)以及平行線的性質(zhì)的運(yùn)用,根據(jù)折疊的性質(zhì)得出∠2=∠ABD是關(guān)鍵.16、【解析】
根據(jù),只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量,平行四邊形的性質(zhì),解題關(guān)鍵是表達(dá)出、.三、解答題(共8題,共72分)17、(1)證明見解析;(2)4.8.【解析】
(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點(diǎn)睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識(shí)點(diǎn),熟練運(yùn)算這些知識(shí)是解決問題的關(guān)鍵.18、(1);(2)【解析】
(1)用樹狀圖分3次實(shí)驗(yàn)列舉出所有情況,再看3輛車都選擇A通道通過的情況數(shù)占總情況數(shù)的多少即可;
(2)由(1)可知所有可能的結(jié)果數(shù)目,再看至少有兩輛汽車選擇B通道通過的情況數(shù)占總情況數(shù)的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數(shù)有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點(diǎn)睛】考查了概率的求法;用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比;得到所求的情況數(shù)是解決本題的關(guān)鍵.19、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補(bǔ)全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補(bǔ)全條形圖如下:
(3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計(jì)該校喜愛C,D兩類校本課程的學(xué)生共有840名.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).20、(1)12;(2)1【解析】
(1)直接利用概率公式求解即可;(2)依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率即可.【詳解】(1)從中隨機(jī)抽出一張牌,牌面所有可能出現(xiàn)的結(jié)果有4種,且它們出現(xiàn)的可能性相等,其中出現(xiàn)偶數(shù)的情況有2種,∴P(牌面是偶數(shù))=24=1故答案為:12(2)根據(jù)題意,畫樹狀圖:可知,共有16種等可能的結(jié)果,其中恰好是4的倍數(shù)的共有4種,∴【點(diǎn)睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點(diǎn),即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點(diǎn):1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).22、1-【解析】
利用零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負(fù)指數(shù)次冪的性質(zhì)進(jìn)行計(jì)算即可.【詳解】解:原式=.【點(diǎn)睛】本題考查了零指數(shù)冪和絕對值的性質(zhì)、特殊角的三角函數(shù)值、負(fù)指數(shù)次冪的性質(zhì),熟練掌握性質(zhì)及定義是解題的關(guān)鍵.23、(1)詳見解析;(2);(3)4<OC<1.【解析】
(1)連接OQ,由切線性質(zhì)得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質(zhì)即可得證.(2)由(1)中全等三角形性質(zhì)得∠AOP=∠BOQ,從而可得P、O、Q三點(diǎn)共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質(zhì)得OQ=4,結(jié)合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質(zhì)可得△APO的外心是OA的中點(diǎn),結(jié)合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育心理學(xué)在學(xué)生心理輔導(dǎo)中的應(yīng)用研究
- 提升孩子音樂節(jié)奏感的科學(xué)方法
- 提升團(tuán)隊(duì)創(chuàng)意思維能力的培訓(xùn)方案
- 教育技術(shù)中的情感交流與互動(dòng)教學(xué)模式研究
- 2025年度行政單位酒店住宿客房升級改造合同3篇
- 商務(wù)會(huì)議中的客戶服務(wù)細(xì)節(jié)與質(zhì)量改進(jìn)方案
- 教育科技融合下的小學(xué)數(shù)學(xué)教學(xué)創(chuàng)新實(shí)踐案例分享
- 2025年度西瓜產(chǎn)業(yè)鏈一體化運(yùn)營管理服務(wù)合同2篇
- 2025年度環(huán)境協(xié)議:供方服務(wù)與交付3篇
- 第二課 月圓月缺-形狀補(bǔ)間動(dòng)畫 說課稿 -2023-2024學(xué)年大連版(2015)初中信息技術(shù)八年級下冊001
- 2024年關(guān)愛留守兒童工作總結(jié)
- GB/T 45092-2024電解水制氫用電極性能測試與評價(jià)
- 《算術(shù)平方根》課件
- 2024-2024年上海市高考英語試題及答案
- 注射泵管理規(guī)范及工作原理
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試化學(xué)試題 附答案
- 大唐電廠采購合同范例
- GB/T 18724-2024印刷技術(shù)印刷品與印刷油墨耐各種試劑性的測定
- IEC 62368-1標(biāo)準(zhǔn)解讀-中文
- 15J403-1-樓梯欄桿欄板(一)
- 2024年中考語文名句名篇默寫分類匯編(解析版全國)
評論
0/150
提交評論