版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
arXiv:2401.03568v2[cs.AI]25Jan2024
AGENTAI:
SURVEYINGTHEHORIZONSOFMULTIMODALINTERACTION
ZaneDurante1?*,QiuyuanHuang2??,NaokiWake2?,RanGong3?,JaeSungPark4?,BidiptaSarkar1?,RohanTaori1?,YusukeNoda5,DemetriTerzopoulos3,YejinChoi4,KatsushiIkeuchi2,HoiVo5,LiFei-Fei1,JianfengGao2
StanfordUniversity;2MicrosoftResearch,Redmond;
UniversityofCalifornia,LosAngeles;4UniversityofWashington;5MicrosoftGaming
Figure1:OverviewofanAgentAIsystemthatcanperceiveandactindifferentdomainsandapplications.AgentAIisemergingasapromisingavenuetowardArtificialGeneralIntelligence(AGI).AgentAItraininghasdemonstratedthecapacityformulti-modalunderstandinginthephysicalworld.Itprovidesaframeworkforreality-agnostictrainingbyleveraginggenerativeAIalongsidemultipleindependentdatasources.Largefoundationmodelstrainedforagentandaction-relatedtaskscanbeappliedtophysicalandvirtualworldswhentrainedoncross-realitydata.WepresentthegeneraloverviewofanAgentAIsystemthatcanperceiveandactinmanydifferentdomainsandapplications,possiblyservingasaroutetowardsAGIusinganagentparadigm.
?EqualContribution.?ProjectLead.?WorkdonewhileinterningatMicrosoftResearch,Redmond.
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction APREPRINT
ABSTRACT
Multi-modalAIsystemswilllikelybecomeaubiquitouspresenceinoureverydaylives.Apromisingapproachtomakingthesesystemsmoreinteractiveistoembodythemasagentswithinphysicalandvirtualenvironments.Atpresent,systemsleverageexistingfoundationmodelsasthebasicbuildingblocksforthecreationofembodiedagents.Embeddingagentswithinsuchenvironmentsfacilitatestheabilityofmodelstoprocessandinterpretvisualandcontextualdata,whichiscriticalforthecreationofmoresophisticatedandcontext-awareAIsystems.Forexample,asystemthatcanperceiveuseractions,humanbehavior,environmentalobjects,audioexpressions,andthecollectivesentimentofascenecanbeusedtoinformanddirectagentresponseswithinthegivenenvironment.Toaccelerateresearchonagent-basedmultimodalintelligence,wedefine“AgentAI”asaclassofinteractivesystemsthatcanperceivevisualstimuli,languageinputs,andotherenvironmentally-groundeddata,andcanproducemeaningfulembodiedactions.Inparticular,weexploresystemsthataimtoimproveagentsbasedonnext-embodiedactionpredictionbyincorporatingexternalknowledge,multi-sensoryinputs,andhumanfeedback.WearguethatbydevelopingagenticAIsystemsingroundedenvironments,onecanalsomitigatethehallucinationsoflargefoundationmodelsandtheirtendencytogenerateenvironmentallyincorrectoutputs.TheemergingfieldofAgentAIsubsumesthebroaderembodiedandagenticaspectsofmultimodalinteractions.Beyondagentsactingandinteractinginthephysicalworld,weenvisionafuturewherepeoplecaneasilycreateanyvirtualrealityorsimulatedsceneandinteractwithagentsembodiedwithinthevirtualenvironment.
Contents
1
Introduction
5
1.1
Motivation
.......................................................
5
1.2
Background
......................................................
5
1.3
Overview
.......................................................
6
2
AgentAIIntegration
7
2.1
InfiniteAIagent
....................................................
7
2.2
AgentAIwithLargeFoundationModels
.......................................
8
2.2.1
Hallucinations
.................................................
8
2.2.2
BiasesandInclusivity
.............................................
9
2.2.3
DataPrivacyandUsage
............................................
10
2.2.4
InterpretabilityandExplainability
.......................................
11
2.2.5
InferenceAugmentation
............................................
12
2.2.6
Regulation
...................................................
13
2.3
AgentAIforEmergentAbilities
............................................
14
3
AgentAIParadigm
15
3.1
LLMsandVLMs
...................................................
15
3.2
AgentTransformerDefinition
.............................................
15
3.3
AgentTransformerCreation
..............................................
16
4
AgentAILearning
17
4.1
StrategyandMechanism
................................................
17
4.1.1
ReinforcementLearning(RL)
.........................................
17
4.1.2
ImitationLearning(IL)
............................................
18
4.1.3
TraditionalRGB
................................................
18
4.1.4
In-contextLearning
..............................................
18
4.1.5
OptimizationintheAgentSystem
......................................
18
4.2
AgentSystems(zero-shotandfew-shotlevel)
.....................................
19
4.2.1
AgentModules
................................................
19
4.2.2
AgentInfrastructure
..............................................
19
4.3
AgenticFoundationModels(pretrainingandfinetunelevel)
.............................
19
2
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction
APREPRINT
5AgentAICategorization
20
5.1
GeneralistAgentAreas
................................
................
20
5.2
EmbodiedAgents
...................................
................
20
5.2.1
ActionAgents
.................................
................
20
5.2.2
InteractiveAgents
...............................
................
21
5.3
SimulationandEnvironmentsAgents
.........................
................
21
5.4
GenerativeAgents
...................................
................
21
5.4.1
AR/VR/mixed-realityAgents
.........................
................
22
5.5
KnowledgeandLogicalInferenceAgents
.......................
................
22
5.5.1
KnowledgeAgent
...............................
................
23
5.5.2
LogicAgents
.................................
................
23
5.5.3
AgentsforEmotionalReasoning
.......................
................
23
5.5.4
Neuro-SymbolicAgents
............................
................
24
5.6
LLMsandVLMsAgent
................................
................
24
6AgentAIApplicationTasks
24
6.1
AgentsforGaming
..................................
................
24
6.1.1
NPCBehavior
.................................
................
24
6.1.2
Human-NPCInteraction
............................
................
25
6.1.3
Agent-basedAnalysisofGaming
.......................
................
25
6.1.4
SceneSynthesisforGaming
.........................
................
27
6.1.5
ExperimentsandResults
...........................
................
27
6.2
Robotics
........................................
................
28
6.2.1
LLM/VLMAgentforRobotics.
........................
................
30
6.2.2
ExperimentsandResults.
...........................
................
31
6.3
Healthcare
.......................................
................
35
6.3.1
CurrentHealthcareCapabilities
........................
................
36
6.4
MultimodalAgents
..................................
................
36
6.4.1
Image-LanguageUnderstandingandGeneration
...............
................
36
6.4.2
VideoandLanguageUnderstandingandGeneration
.............
................
37
6.4.3
ExperimentsandResults
...........................
................
39
6.5
Video-languageExperiments
.............................
................
41
6.6
AgentforNLP
.....................................
................
45
6.6.1
LLMagent
..................................
................
45
6.6.2
GeneralLLMagent
..............................
................
45
6.6.3
Instruction-followingLLMagents
......................
................
46
6.6.4
ExperimentsandResults
...........................
................
46
7AgentAIAcrossModalities,Domains,andRealities
48
7.1
AgentsforCross-modalUnderstanding
........................
................
48
7.2
AgentsforCross-domainUnderstanding
.......................
................
48
7.3
Interactiveagentforcross-modalityandcross-reality
.................
................
49
7.4
SimtoRealTransfer
..................................
................
49
8ContinuousandSelf-improvementforAgentAI
49
8.1
Human-basedInteractionData
............................
................
49
8.2
FoundationModelGeneratedData
..........................
................
50
9AgentDatasetandLeaderboard
50
9.1
“CuisineWorld”DatasetforMulti-agentGaming
...................
................
50
9.1.1
Benchmark
..................................
................
51
9.1.2
Task
......................................
................
51
9.1.3
MetricsandJudging
..............................
................
51
9.1.4
Evaluation
...................................
................
51
9.2
Audio-Video-LanguagePre-trainingDataset.
.....................
................
51
10BroaderImpactStatement
52
11EthicalConsiderations
53
3
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction
APREPRINT
12
DiversityStatement
53
References
55
Appendix
69
A
GPT-4VAgentPromptDetails
69
B
GPT-4VforBleedingEdge
69
C
GPT-4VforMicrosoftFightSimulator
69
D
GPT-4VforAssassin’sCreedOdyssey
69
E
GPT-4VforGEARSofWAR4
69
F
GPT-4VforStarfield
75
AuthorBiographies
77
Acknowledgemets
80
4
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction APREPRINT
1 Introduction
1.1 Motivation
Historically,AIsystemsweredefinedatthe1956DartmouthConferenceasartificiallifeformsthatcouldcollectinformationfromtheenvironmentandinteractwithitinusefulways.Motivatedbythisdefinition,Minsky’sMITgroupbuiltin1970aroboticssystem,calledthe“CopyDemo,”thatobserved“blocksworld”scenesandsuccessfullyreconstructedtheobservedpolyhedralblockstructures.Thesystem,whichcomprisedobservation,planning,andmanipulationmodules,revealedthateachofthesesubproblemsishighlychallengingandfurtherresearchwasnecessary.TheAIfieldfragmentedintospecializedsubfieldsthathavelargelyindependentlymadegreatprogressintacklingtheseandotherproblems,butover-reductionismhasblurredtheoverarchinggoalsofAIresearch.
Toadvancebeyondthestatusquo,itisnecessarytoreturntoAIfundamentalsmotivatedbyAristotelianHolism.Fortunately,therecentrevolutioninLargeLanguageModels(LLMs)andVisualLanguageModels(VLMs)hasmadeitpossibletocreatenovelAIagentsconsistentwiththeholisticideal.Seizinguponthisopportunity,thisarticleexploresmodelsthatintegratelanguageproficiency,visualcognition,contextmemory,intuitivereasoning,andadaptability.ItexploresthepotentialcompletionofthisholisticsynthesisusingLLMsandVLMs.Inourexploration,wealsorevisitsystemdesignbasedonAristotle’sFinalCause,theteleological“whythesystemexists”,whichmayhavebeenoverlookedinpreviousroundsofAIdevelopment.
WiththeadventofpowerfulpretrainedLLMsandVLMs,arenaissanceinnaturallanguageprocessingandcomputervisionhasbeencatalyzed.LLMsnowdemonstrateanimpressiveabilitytodecipherthenuancesofreal-worldlinguisticdata,oftenachievingabilitiesthatparallelorevensurpasshumanexpertise(
OpenAI
,
2023
).Recently,researchershaveshownthatLLMsmaybeextendedtoactasagentswithinvariousenvironments,performingintricateactionsandtaskswhenpairedwithdomain-specificknowledgeandmodules(
Xietal.
,
2023
).Thesescenarios,characterizedbycomplexreasoning,understandingoftheagent’sroleanditsenvironment,alongwithmulti-stepplanning,testtheagent’sabilitytomakehighlynuancedandintricatedecisionswithinitsenvironmentalconstraints(
Wuetal.
,
2023
;
MetaFundamental
AIResearch(FAIR)DiplomacyTeametal.
,
2022
).
Buildingupontheseinitialefforts,theAIcommunityisonthecuspofasignificantparadigmshift,transitioningfromcreatingAImodelsforpassive,structuredtaskstomodelscapableofassumingdynamic,agenticrolesindiverseandcomplexenvironments.Inthiscontext,thisarticleinvestigatestheimmensepotentialofusingLLMsandVLMsasagents,emphasizingmodelsthathaveablendoflinguisticproficiency,visualcognition,contextualmemory,intuitivereasoning,andadaptability.LeveragingLLMsandVLMsasagents,especiallywithindomainslikegaming,robotics,andhealthcare,promisesnotjustarigorousevaluationplatformforstate-of-the-artAIsystems,butalsoforeshadowsthetransformativeimpactsthatAgent-centricAIwillhaveacrosssocietyandindustries.Whenfullyharnessed,agenticmodelscanredefinehumanexperiencesandelevateoperationalstandards.Thepotentialforsweepingautomationusheredinbythesemodelsportendsmonumentalshiftsinindustriesandsocio-economicdynamics.Suchadvancementswillbeintertwinedwithmultifacetedleader-board,notonlytechnicalbutalsoethical,aswewillelaborateuponinSection
11
.Wedelveintotheoverlappingareasofthesesub-fieldsofAgentAIandillustratetheirinterconnectednessinFig.
1
.
1.2 Background
Wewillnowintroducerelevantresearchpapersthatsupporttheconcepts,theoreticalbackground,andmodernimplementationsofAgentAI.
LargeFoundationModels:LLMsandVLMshavebeendrivingtheefforttodevelopgeneralintelligentmachines(
Bubecketal.
,
2023
;
Mirchandanietal.
,
2023
).Althoughtheyaretrainedusinglargetextcorpora,theirsuperiorproblem-solvingcapacityisnotlimitedtocanonicallanguageprocessingdomains.LLMscanpotentiallytacklecomplextasksthatwerepreviouslypresumedtobeexclusivetohumanexpertsordomain-specificalgorithms,rangingfrommathematicalreasoning(
Imanietal.
,
2023
;
Weietal.
,
2022
;
Zhuetal.
,
2022
)toansweringquestionsofprofessionallaw(
Blair-Staneketal.
,
2023
;
Choietal.
,
2023
;
Nay
,
2022
).RecentresearchhasshownthepossibilityofusingLLMstogeneratecomplexplansforrobotsandgameAI(
Liangetal.
,
2022
;
Wangetal.
,
2023a
,
b
;
Yaoetal.
,
2023a
;
Huang
etal.
,
2023a
),markinganimportantmilestoneforLLMsasgeneral-purposeintelligentagents.
5
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction APREPRINT
EmbodiedAI:AnumberofworksleverageLLMstoperformtaskplanning(
Huangetal.
,
2022a
;
Wangetal.
,
2023b
;
Yaoetal.
,
2023a
;
Lietal.
,
2023a
),specificallytheLLMs’WWW-scaledomainknowledgeandemergentzero-shotembodiedabilitiestoperformcomplextaskplanningandreasoning.RecentroboticsresearchalsoleveragesLLMstoperformtaskplanning(
Ahnetal.
,
2022a
;
Huangetal.
,
2022b
;
Liangetal.
,
2022
)bydecomposingnaturallanguageinstructionintoasequenceofsubtasks,eitherinthenaturallanguageformorinPythoncode,thenusingalow-levelcontrollertoexecutethesesubtasks.Additionally,theyincorporateenvironmentalfeedbacktoimprovetaskperformance(
Huangetal.
,
2022b
),(
Liangetal.
,
2022
),(
Wangetal.
,
2023a
),and(
Ikeuchietal.
,
2023
).
InteractiveLearning:AIagentsdesignedforinteractivelearningoperateusingacombinationofmachinelearningtechniquesanduserinteractions.Initially,theAIagentistrainedonalargedataset.Thisdatasetincludesvarioustypesofinformation,dependingontheintendedfunctionoftheagent.Forinstance,anAIdesignedforlanguagetaskswouldbetrainedonamassivecorpusoftextdata.Thetraininginvolvesusingmachinelearningalgorithms,whichcouldincludedeeplearningmodelslikeneuralnetworks.ThesetrainingmodelsenabletheAItorecognizepatterns,makepredictions,andgenerateresponsesbasedonthedataonwhichitwastrained.TheAIagentcanalsolearnfromreal-timeinteractionswithusers.Thisinteractivelearningcanoccurinvariousways:1)Feedback-basedlearning:TheAIadaptsitsresponsesbasedondirectuserfeedback(
Lietal.
,
2023b
;
Yuetal.
,
2023a
;
Parakhetal.
,
2023
;
Zha
etal.
,
2023
;
Wakeetal.
,
2023a
,
b
,
c
).Forexample,ifausercorrectstheAI’sresponse,theAIcanusethisinformationtoimprovefutureresponses(
Zhaetal.
,
2023
;
Liuetal.
,
2023a
).2)ObservationalLearning:TheAIobservesuserinteractionsandlearnsimplicitly.Forexample,ifusersfrequentlyasksimilarquestionsorinteractwiththeAIinaparticularway,theAImightadjustitsresponsestobettersuitthesepatterns.ItallowstheAIagenttounderstandandprocesshumanlanguage,multi-modelsetting,interpretthecrossreality-context,andgeneratehuman-users’responses.Overtime,withmoreuserinteractionsandfeedback,theAIagent’sperformancegenerallycontinuousimproves.ThisprocessisoftensupervisedbyhumanoperatorsordeveloperswhoensurethattheAIislearningappropriatelyandnotdevelopingbiasesorincorrectpatterns.
1.3 Overview
MultimodalAgentAI(MAA)isafamilyofsystemsthatgenerateeffectiveactionsinagivenenvironmentbasedontheunderstandingofmultimodalsensoryinput.WiththeadventofLargeLanguageModels(LLMs)andVision-LanguageModels(VLMs),numerousMAAsystemshavebeenproposedinfieldsrangingfrombasicresearchtoapplications.Whiletheseresearchareasaregrowingrapidlybyintegratingwiththetraditionaltechnologiesofeachdomain(e.g.,visualquestionansweringandvision-languagenavigation),theysharecommoninterestssuchasdatacollection,benchmarking,andethicalperspectives.Inthispaper,wefocusonthesomerepresentativeresearchareasofMAA,namelymultimodality,gaming(VR/AR/MR),robotics,andhealthcare,andweaimtoprovidecomprehensiveknowledgeonthecommonconcernsdiscussedinthesefields.AsaresultweexpecttolearnthefundamentalsofMAAandgaininsightstofurtheradvancetheirresearch.Specificlearningoutcomesinclude:
MAAOverview:Adeepdiveintoitsprinciplesandrolesincontemporaryapplications,providingresearcherwithathoroughgraspofitsimportanceanduses.
Methodologies:DetailedexamplesofhowLLMsandVLMsenhanceMAAs,illustratedthroughcasestudiesingaming,robotics,andhealthcare.
PerformanceEvaluation:GuidanceontheassessmentofMAAswithrelevantdatasets,focusingontheireffectivenessandgeneralization.
EthicalConsiderations:Adiscussiononthesocietalimpactsandethicalleader-boardofdeployingAgentAI,highlightingresponsibledevelopmentpractices.
EmergingTrendsandFutureleader-board:Categorizethelatestdevelopmentsineachdomainanddiscussthefuturedirections.
Computer-basedactionandgeneralistagents(GAs)areusefulformanytasks.AGAtobecometrulyvaluabletoitsusers,itcannaturaltointeractwith,andgeneralizetoabroadrangeofcontextsandmodalities.WeaimstocultivateavibrantresearchecosystemandcreateasharedsenseofidentityandpurposeamongtheAgentAIcommunity.MAAhasthepotentialtobewidelyapplicableacrossvariouscontextsandmodalities,includinginputfromhumans.Therefore,webelievethisAgentAIareacanengageadiverserangeofresearchers,fosteringadynamicAgentAIcommunityand
6
AgentAI:
SurveyingtheHorizonsofMultimodalInteraction APREPRINT
sharedgoals.Ledbyesteemedexpertsfromacademiaandindustry,weexpectthatthispaperwillbeaninteractiveandenrichingexperience,completewithagentinstruction,casestudies,taskssessions,andexperimentsdiscussionensuringacomprehensiveandengaginglearningexperienceforallresearchers.
ThispaperaimstoprovidegeneralandcomprehensiveknowledgeaboutthecurrentresearchinthefieldofAgentAI.Tothisend,therestofthepaperisorganizedasfollows.Section
2
outlineshowAgentAIbenefitsfromintegratingwithrelatedemergingtechnologies,particularlylargefoundationmodels.Section
3
describesanewparadigmandframeworkthatweproposefortrainingAgentAI.Section
4
providesanoverviewofthemethodologiesthatarewidelyusedinthetrainingofAgentAI.Section
5
categorizesanddiscussesvarioustypesofagents.Section
6
introducesAgentAIapplicationsingaming,robotics,andhealthcare.Section
7
explorestheresearchcommunity’seffortstodevelopaversatileAgentAI,capableofbeingappliedacrossvariousmodalities,domains,andbridgingthesim-to-realgap.Section
8
discussesthepotentialofAgentAIthatnotonlyreliesonpre-trainedfoundationmodels,butalsocontinuouslylearnsandself-improvesbyleveraginginteractionswiththeenvironmentandusers.Section
9
introducesournewdatasetsthataredesignedforthetrainingofmultimodalAgentAI.Section
11
discussesthehottopicoftheethicsconsiderationofAIagent,limitations,andsocietalimpactofourpaper.
2 AgentAIIntegration
FoundationmodelsbasedonLLMsandVLMs,asproposedinpreviousresearch,stillexhibitlimitedperformanceintheareaofembodiedAI,particularlyintermsofunderstanding,generating,editing,andinteractingwithinunseenenvironmentsorscenarios(
Huangetal.
,
2023a
;
Zengetal.
,
2023
).Consequently,theselimitationsleadtosub-optimaloutputsfromAIagents.Currentagent-centricAImodelingapproachesfocusondirectlyaccessibleandclearlydefineddata(e.g.textorstringrepresentationsoftheworldstate)andgenerallyusedomainandenvironment-independentpatternslearnedfromtheirlarge-scalepretrainingtopredictactionoutputsforeachenvironment(
Xietal.
,
2023
;
Wang
etal.
,
2023c
;
Gongetal.
,
2023a
;
Wuetal.
,
2023
).In(
Huangetal.
,
2023a
),weinvestigatethetaskofknowledge-guidedcollaborativeandinteractivescenegenerationbycombininglargefoundationmodels,andshowpromisingresultsthatindicateknowledge-groundedLLMagentscanimprovetheperformanceof2Dand3Dsceneunderstanding,generation,andediting,alongsidewithotherhuman-agentinteractions(
Huangetal.
,
2023a
).ByintegratinganAgentAIframework,largefoundationmodelsareabletomoredeeplyunderstanduserinputtoformacomplexandadaptiveH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聲波定位儀器產(chǎn)品供應鏈分析
- 箭筒套體育器材項目營銷計劃書
- 便攜式嬰兒搖床產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 書籍裝訂行業(yè)市場調(diào)研分析報告
- 放大設備攝影產(chǎn)品供應鏈分析
- 畫框掛桿項目運營指導方案
- 堅果鉗產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 化妝粉產(chǎn)品供應鏈分析
- 咖啡杯產(chǎn)業(yè)鏈招商引資的調(diào)研報告
- 玩具滑板車市場分析及投資價值研究報告
- 最新地鐵隧道襯砌背后回填注漿方案
- 城市變化之路(PPT課件)
- 量子力學自學輔導與參考答案
- 艾滋病初篩實驗室SOP文件
- 華師大九年級上數(shù)學半期試題
- 最新個人簡歷模板(推薦)
- 四年級英語書寫比賽試題1
- 《建筑基坑支護技術規(guī)程》JGJ120-2012
- 監(jiān)控質(zhì)量保證及承諾書
- 奮斗在巴西的何氏一家
- 裝修公司財務管理制度
評論
0/150
提交評論