2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷含解析_第1頁
2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷含解析_第2頁
2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷含解析_第3頁
2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷含解析_第4頁
2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆內蒙古自治區(qū)鄂爾多斯市中考數(shù)學四模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數(shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.3.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個4.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.5.計算-4-|-3|的結果是()A.-1B.-5C.1D.56.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.37.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.8.下列命題是真命題的是()A.如實數(shù)a,b滿足a2=b2,則a=bB.若實數(shù)a,b滿足a<0,b<0,則ab<0C.“購買1張彩票就中獎”是不可能事件D.三角形的三個內角中最多有一個鈍角9.平面直角坐標系中的點P(2﹣m,m)在第一象限,則m的取值范圍在數(shù)軸上可表示為()A. B.C. D.10.某工廠計劃生產(chǎn)210個零件,由于采用新技術,實際每天生產(chǎn)零件的數(shù)量是原計劃的1.5倍,因此提前5天完成任務.設原計劃每天生產(chǎn)零件個,依題意列方程為()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.12.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.13.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.14.如圖,在△ABC中,∠BAC=50°,AC=2,AB=3,將△ABC繞點A逆時針旋轉50°,得到△AB1C1,則陰影部分的面積為_______.15.如圖,正方形ABCD邊長為3,以直線AB為軸,將正方形旋轉一周.所得圓柱的主視圖(正視圖)的周長是_____.16.計算=_____.三、解答題(共8題,共72分)17.(8分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣118.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標;(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標.19.(8分)如圖,網(wǎng)格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設的三邊,,,請證明勾股定理.20.(8分)襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關于x的函數(shù)解析式為且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).m=,n=;求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?21.(8分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.22.(10分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.23.(12分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?24.如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.2、C【解析】

根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.

所以這些運動員跳高成績的中位數(shù)是1.1.

故選:C.【點睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.4、C【解析】

主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.5、B【解析】

原式利用算術平方根定義,以及絕對值的代數(shù)意義計算即可求出值.【詳解】原式=-2-3=-5,故選:B.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.6、B【解析】畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到1班和2班的結果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到1班和2班的結果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.7、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.8、D【解析】

A.兩個數(shù)的平方相等,這兩個數(shù)不一定相等,有正負之分即可判斷B.同號相乘為正,異號相乘為負,即可判斷C.“購買1張彩票就中獎”是隨機事件即可判斷D.根據(jù)三角形內角和為180度,三個角中不可能有兩個以上鈍角即可判斷【詳解】如實數(shù)a,b滿足a2=b2,則a=±b,A是假命題;數(shù)a,b滿足a<0,b<0,則ab>0,B是假命題;若實“購買1張彩票就中獎”是隨機事件,C是假命題;三角形的三個內角中最多有一個鈍角,D是真命題;故選:D【點睛】本題考查了命題與定理,根據(jù)實際判斷是解題的關鍵9、B【解析】

根據(jù)第二象限中點的特征可得:,解得:.在數(shù)軸上表示為:故選B.考點:(1)、不等式組;(2)、第一象限中點的特征10、A【解析】

設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,根據(jù)提前5天完成任務,列方程即可.【詳解】設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程即可.二、填空題(本大題共6個小題,每小題3分,共18分)11、72°【解析】

首先根據(jù)正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點睛】本題考查的是正多邊形和圓,利用數(shù)形結合求解是解答此題的關鍵12、1【解析】

根據(jù)弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.13、1.【解析】

直接利用平移的性質以及反比例函數(shù)圖象上點的坐標性質得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上的性質,正確得出D點坐標是解題關鍵.14、π【解析】試題分析:∵,∴S陰影===.故答案為.考點:旋轉的性質;扇形面積的計算.15、1.【解析】分析:所得圓柱的主視圖是一個矩形,矩形的寬是3,長是2.詳解:矩形的周長=3+3+2+2=1.點睛:本題比較容易,考查三視圖和學生的空間想象能力以及計算矩形的周長.16、0【解析】分析:先計算乘方、零指數(shù)冪,再計算加減可得結果.詳解:1-1=0故答案為0.點睛:零指數(shù)冪成立的條件是底數(shù)不為0.三、解答題(共8題,共72分)17、1【解析】

本題涉及絕對值、特殊角的三角函數(shù)值、負指數(shù)冪、二次根式化簡、乘方5個考點,先針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結果即可.【詳解】解:原式=2﹣+2×﹣3+1=1.【點睛】本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型,解決此類題目的關鍵是熟練掌握絕對值、特殊角的三角函數(shù)值、負指數(shù)冪、二次根式化簡、乘方等考點的運算.18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】

1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關于x的方程,求出方程的解得到x的值,確定出A坐標,將A坐標代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標;(2)由A與B交點橫坐標,根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標.【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標為(0,),綜上,滿足題意P的坐標為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標與圖形性質,勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質,利用了數(shù)形結合的思想,熟練運用數(shù)形結合思想是解題的關鍵.19、(1)見解析;(2)①正方形;②;③見解析.【解析】

(1)根據(jù)旋轉作圖的方法進行作圖即可;(2)①根據(jù)旋轉的性質可證AC=BC1=B1C2=B2C3,從而證出四邊形CC1C2C3是菱形,再根據(jù)有一個角是直角的菱形是正方形即可作出判斷,同理可判斷四邊形ABB1B2是正方形;②根據(jù)相似圖形的面積之比等相似比的平方即可得到結果;③用兩種不同的方法計算大正方形的面積化簡即可得到勾股定理.【詳解】(1)如圖,(2)①四邊形CC1C2C3和四邊形ABB1B2是正方形.理由如下:∵△ABC≌△BB1C1,∴AC=BC1,BC==B1C1,AB=BB1.再根據(jù)旋轉的性質可得:BC1=B1C2=B2C3,B2C1=B2C2=AC3,BB1=B1B2=AB2.∴CC1=C1C2=C2C3=CC3AB=BB1=B1B2=AB2∴四邊形CC1C2C3和四邊形ABB1B2是菱形.∵∠C=∠ABB1=90°,∴四邊形CC1C2C3和四邊形ABB1B2是正方形.②∵四邊形CC1C2C3和四邊形ABB1B2是正方形,∴四邊形CC1C2C3∽四邊形ABB1B2.∴=∵AB=,CC1=,∴==.③四邊形CC1C2C3的面積==,四邊形CC1C2C3的面積=4△ABC的面積+四邊形ABB1B2的面積=4+=∴=,化簡得:=.【點睛】本題考查了旋轉作圖和旋轉的性質,正方形的判定和性質,勾股定理,掌握相關知識是解題的關鍵.20、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.【解析】【分析】(1)根據(jù)題意將第12天的售價、第26天的售價代入即可得;(2)在(1)的基礎上分段表示利潤,討論最值;(3)分別在(2)中的兩個函數(shù)取值范圍內討論利潤不低于870的天數(shù),注意天數(shù)為正整數(shù).【詳解】(1)當?shù)?2天的售價為32元/件,代入y=mx﹣76m得32=12m﹣76m,解得m=,當?shù)?6天的售價為25元/千克時,代入y=n,則n=25,故答案為m=,n=25;(2)由(1)第x天的銷售量為20+4(x﹣1)=4x+16,當1≤x<20時,W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,∴當x=18時,W最大=968,當20≤x≤30時,W=(4x+16)(25﹣18)=28x+112,∵28>0,∴W隨x的增大而增大,∴當x=30時,W最大=952,∵968>952,∴當x=18時,W最大=968;(3)當1≤x<20時,令﹣2x2+72x+320=870,解得x1=25,x2=11,∵拋物線W=﹣2x2+72x+320的開口向下,∴11≤x≤25時,W≥870,∴11≤x<20,∵x為正整數(shù),∴有9天利潤不低于870元,當20≤x≤30時,令28x+112≥870,解得x≥27,∴27≤x≤30∵x為正整數(shù),∴有3天利潤不低于870元,∴綜上所述,當天利潤不低于870元的天數(shù)共有12天.【點睛】本題考查了一次函數(shù)的應用,二次函數(shù)的應用,弄清題意,找準題中的數(shù)量關系,運用分類討論思想是解題的關鍵.21、見解析【解析】

(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點睛】本題考查相似三角形的判定和性質,平行四邊形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.22、(1)證明見解析(2)①②3【解析】

(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點睛】本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數(shù)形結合解答.23、(1)購進A種樹苗的單價為200元/棵,購進B種樹苗的單價為300元/棵(2)A種樹苗至少需購進1棵【解析】

(1)設購進A種樹苗的單價為x元/棵,購進B種樹苗的單價為y元/棵,根據(jù)“若購進A種樹苗3棵,B種樹苗5棵,需210元,若購進A種樹苗4棵,B種樹苗1棵,需3800元”,即可得出關于x、y的二元一次方程組,解之即可得出結論;

(2)設需購進A種樹苗a棵

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論