綜合解析-人教版數(shù)學(xué)八年級上冊期中模擬考考卷(Ⅲ)(含詳解)_第1頁
綜合解析-人教版數(shù)學(xué)八年級上冊期中模擬考考卷(Ⅲ)(含詳解)_第2頁
綜合解析-人教版數(shù)學(xué)八年級上冊期中模擬考考卷(Ⅲ)(含詳解)_第3頁
綜合解析-人教版數(shù)學(xué)八年級上冊期中模擬考考卷(Ⅲ)(含詳解)_第4頁
綜合解析-人教版數(shù)學(xué)八年級上冊期中模擬考考卷(Ⅲ)(含詳解)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······考試時間:90分鐘;命題人:數(shù)學(xué)教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題35分)一、單選題(5小題,每小題3分,共計15分)1、下列長度的3根小木棒不能搭成三角形的是(

)A.2cm,3cm,4cm B.1cm,2cm,3cm C.3cm,4cm,5cm D.4cm,5cm,6cm2、圖中的小正方形邊長都相等,若,則點Q可能是圖中的(

)A.點D B.點C C.點B D.點A3、如圖,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,則△ABC的面積為()A.14 B.12 C.10 D.74、能說明“銳角,銳角的和是銳角”是假命題的例證圖是(

).A. B.C. D.5、如圖,在和中,,連接交于點,連接.下列結(jié)論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.1二、多選題(5小題,每小題4分,共計20分)1、(多選)如圖,在Rt△ABC中,∠BAC=90°,∠ACQ=∠BCQ,AD⊥BC,AE=CE,AD與CQ交于點N,BE與CQ交于點M,下面說法正確的是(

)······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······A.S△ABE=S△BCE B.∠AQN=∠ANQ C.∠BAD=2∠ACQ D.AD?BC=AB?AC2、下列命題中正確的是()A.有兩個角和第三個角的平分線對應(yīng)相等的兩個三角形全等;B.有兩條邊和第三條邊上的中線對應(yīng)相等的兩個三角形全等;C.有兩條邊和第三條邊上的高對應(yīng)相等的兩個三角形全等D.有兩條邊和一個角對應(yīng)相等的兩個三角形全等3、下列作圖語句不正確的是()A.作射線AB,使AB=a B.作∠AOB=∠aC.延長直線AB到點C,使AC=BC D.以點O為圓心作弧4、用下列一種正多邊形可以拼地板的是(

)A.正三角形 B.正六邊形 C.正八邊形 D.正十二邊形5、一幅美麗的圖案,在其頂點處由四個正多邊形鑲嵌而成,其中三個分別為正三角形、正四邊形、正六邊形,則另一個不能為(

)A.正六邊形 B.正五邊形 C.正四邊形 D.正三角形第Ⅱ卷(非選擇題65分)三、填空題(5小題,每小題5分,共計25分)1、已知三角形的三邊長為4、x、11,化簡______.2、如圖,兩根旗桿間相距20米,某人從點B沿BA走向點A,一段時間后他到達(dá)點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為2米/秒,則這個人運動到點M所用時間是__________秒.3、如圖,CA=CB,CD=CE,∠ACB=∠DCE=50°,AD、BE交于點H,連接CH,則∠CHE=_______.4、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、如果三角形兩條邊分別為3和5,則周長L的取值范圍是________四、解答題(5小題,每小題8分,共計40分)1、如圖∠A=20°,∠B=45°,∠C=40°,求∠DFE的度數(shù).······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······2、如圖,在五邊形ABCDE中,AB=CD,∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線.(1)求證:△ABE≌△DCE;(2)當(dāng)∠A=80°,∠ABC=140°,時,∠AED=_________度(直接填空).3、將一副三角尺疊放在一起:(1)如圖①,若∠1=4∠2,請計算出∠CAE的度數(shù);(2)如圖②,若∠ACE=2∠BCD,請求出∠ACD的度數(shù).4、(2020?錦州模擬)問題情境:已知,在等邊△ABC中,∠BAC與∠ACB的角平分線交于點O,點M、N分別在直線AC,AB上,且∠MON=60°,猜想CM、MN、AN三者之間的數(shù)量關(guān)系.方法感悟:小芳的思考過程是在CM上取一點,構(gòu)造全等三角形,從而解決問題;小麗的思考過程是在AB取一點,構(gòu)造全等三角形,從而解決問題;問題解決:(1)如圖1,M、N分別在邊AC,AB上時,探索CM、MN、AN三者之間的數(shù)量關(guān)系,并證明;(2)如圖2,M在邊AC上,點N在BA的延長線上時,請你在圖2中補全圖形,標(biāo)出相應(yīng)字母,探索CM、MN、AN三者之間的數(shù)量關(guān)系,并證明.5、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。-參考答案-一、單選題······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······【解析】【分析】看哪個選項中兩條較小的邊的和大于最大的邊即可.【詳解】A.,能構(gòu)成三角形,不合題意;B.,不能構(gòu)成三角形,符合題意;C.,能構(gòu)成三角形,不合題意;D.,能構(gòu)成三角形,不合題意.故選B.【考點】此題考查了三角形三邊關(guān)系,解題關(guān)鍵在于看較小的兩個數(shù)的和能否大于第三個數(shù).2、A【解析】【分析】根據(jù)全等三角形的判定即可解決問題.【詳解】解:觀察圖象可知△MNP≌△MFD.故選:A.【考點】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、B【解析】【分析】過點D作DF⊥AB于點F,利用角平分線的性質(zhì)得出,將的面積表示為面積之和,分別以AB為底,DF為高,AC為底,DE為高,計算面積即可求得.【詳解】過點D作DF⊥AB于點F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,故選:B.【考點】······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······4、C【解析】【分析】先將每個圖形補充成三角形,再利用三角形的外角性質(zhì)逐項判斷即得答案.【詳解】解:A、如圖1,∠1是銳角,且∠1=,所以此圖說明“銳角,銳角的和是銳角”是真命題,故本選項不符合題意;B、如圖2,∠2是銳角,且∠2=,所以此圖說明“銳角,銳角的和是銳角”是真命題,故本選項不符合題意;C、如圖3,∠3是鈍角,且∠3=,所以此圖說明“銳角,銳角的和是銳角”是假命題,故本選項符合題意;D、如圖4,∠4是銳角,且∠4=,所以此圖說明“銳角,銳角的和是銳角”是真命題,故本選項不符合題意.故選:C.【考點】本題考查了真假命題、舉反例說明一個命題是假命題以及三角形的外角性質(zhì)等知識,屬于基本題型,熟練掌握上述基本知識是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質(zhì)即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質(zhì)得:∴°,②正確;作于,于,如圖所示:則°,······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關(guān)鍵在于利用三角形的全等證明來證明線段相等,角相等.二、多選題1、ABCD【解析】【分析】根據(jù)三角形中位線的概念利用等底同高三角形面積相等判斷①;結(jié)合三角形外角的性質(zhì)和同角的余角相等判斷②;根據(jù)同角的余角相等和角平分線的定義判斷③;利用三角形的面積公式判斷④.【詳解】解:∵AE=CE,∴△ABE與△BCE等底同高,∴S△ABE=S△BCE,故A正確;在Rt△ABC中,∠BAC=90°,AD⊥BC,∴∠ABC+∠ACB=90°,∠BAD+∠ABC=90°,∴∠ABC=∠DAC,∠BAD=∠ACD,∴∠AQN=∠ABC+∠BCQ,∠ANQ=∠DAC+∠ACQ,∵∠ACQ=∠BCQ,∴∠AQN=∠ANQ,故B正確;∠BAD=∠ACD=2∠ACQ,故C正確;∵,∴,故D正確,故選:ABCD.【考點】此題考查了三角形中線的性質(zhì),角平分線的定義,同角的余角相等等知識,題目難度不大,理解相關(guān)的概念正確推理論證是解題的關(guān)鍵.2、AB【解析】【分析】結(jié)合已知條件和全等三角形的判定方法,對所給的四個命題依次判定,即可解答.【詳解】A、正確.可以用AAS判定兩個三角形全等;如圖:∠B=∠B′,∠C=∠C′,AD平分∠BAC,A′D′平分∠B′A′C′,且AD=A′D′,······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······∴∠BAC=∠B′A′C′,∵AD,A′D′分別平分∠BAC,∠B′A′C′,∴∠BAD=∠B′A′D′∵,∴△ABD≌△A′B′D′(AAS),∴AB=A′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(AAS).B、正確.可以用“倍長中線法”,用SAS定理,判斷兩個三角形全等,如圖,,,,AD,A′D′分別為、的中線,分別延長AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∵,∴△ADC≌△EDB,∴BE=AC,,同理:B′E′=A′C′,,∴BE=B′E′,AE=A′E′,∵∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∵,∴∠BAC=∠B′A′C′,∵,,∴△BAC≌△B′A′C′.C、不正確.因為這個高可能在三角形的內(nèi)部,也有可能在三角形的外部,也就是說,這兩個三角形可能一個是銳角三角形,一個是鈍角三角形,所以就不全等.D、不正確,必須是兩邊及其夾角分別對應(yīng)相等的兩個三角形全等.故選:AB.【考點】本題考查了全等三角形的判定方法,要根據(jù)選項提供的已知條件逐個分析,看是否符合全等三角形的判定方法,注意SSA是不能判定兩三角形全等的.3、ACD【解析】【分析】根據(jù)射線的性質(zhì)對A進(jìn)行判斷;根據(jù)作一個角等于已知角對B進(jìn)行判斷;根據(jù)直線的性質(zhì)對C進(jìn)行判斷;畫弧要確定圓心與半徑,則可對D進(jìn)行判斷;.【詳解】······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······B、∠AOB=∠α,故本選項正確;C、直線向兩方無限延伸沒有延長線,故本選項錯誤;D、需要說明半徑的長,故選項錯誤.故選:ACD.【考點】本題考查了作圖-尺規(guī)作圖的定義:尺規(guī)作圖是指用沒有刻度的直尺和圓規(guī)作圖,也考查了直線、射線的性質(zhì).4、AB【解析】【分析】分別求出各個正多邊形的每個內(nèi)角的度數(shù),結(jié)合鑲嵌的條件即可求出答案.【詳解】解:A、正三邊形的一個內(nèi)角度數(shù)為180°÷3=6°,是360°的約數(shù),可以拼地板,符合題意;B、正六邊形的每個內(nèi)角是120°,能整除360°,可以拼地板.符合題意;C.正八邊形的一個內(nèi)角度數(shù)為(8-2)×180°÷8=135°,不是360°的約數(shù),不可以拼地板,不符合題意;D.正十二邊形的一個內(nèi)角度數(shù)為(12-2)×180°÷12=150°,不是360°的約數(shù),不可以拼地板,不符合題意;故選AB.【考點】本題考查了平面鑲嵌(拼地板),計算正多邊形的內(nèi)角能否整除360°是解答此題的關(guān)鍵.5、ABD【解析】【分析】平面鑲嵌要求多邊形在同一個頂點處的所有角的和為根據(jù)平面鑲嵌的要求逐一求解各選項涉及的多邊形在一個頂點處的所有的角之和,從而可得答案.【詳解】解:一幅美麗的圖案,在其頂點處由四個正多邊形鑲嵌而成,其中三個分別為正三角形、正四邊形、正六邊形,在頂點處的四個角的和為:而正三角形、正四邊形、正六邊形的每一個內(nèi)角依次為:當(dāng)?shù)谒膫€多邊形為正六邊形時,故符合題意;當(dāng)?shù)谒膫€多邊形為正五邊形時,故符合題意;當(dāng)?shù)谒膫€多邊形為正四邊形時,故不符合題意;當(dāng)?shù)谒膫€多邊形為正三角形時,故符合題意;故選:【考點】本題考查的是平面鑲嵌,熟悉平面鑲嵌時,圍繞在一個頂點處的所有的角組成一個周角是解題的關(guān)鍵.三、填空題1、11【解析】【分析】······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······【詳解】∵三角形的三邊為4、x、11,∴11-4<x<11+4,∴,∴,故答案為:11.【考點】本題主要考查了構(gòu)成三角形三邊大小的關(guān)系和去絕對值的知識,利用三角形三邊關(guān)系求出x的取值范圍是解答本題的關(guān)鍵.2、故答案為58.4【解析】【分析】根據(jù)角的等量代換求出,便可證出,利用全等的性質(zhì)得到,從而求出的長,再通過時間=路程÷速度列式計算即可.【詳解】解:根據(jù)題意可得:,,,∵∴又∵∴∴在和中∴∴∴∴時間=故答案為4【考點】本題主要考查了全等三角形的判定與性質(zhì),利用角的等量代換找出三角形全等的條件是解題的關(guān)鍵.3、65°【解析】【分析】先判斷出,再判斷出即可得到平分,即可得出結(jié)論.【詳解】解:如圖,,,在和中,;過點作于,于,,······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······在和中,,,在與中,,平分;,,,,,,故答案為:.【考點】此題考查了全等三角形的判定與性質(zhì)以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進(jìn)而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).5、10<L<16【解析】【分析】根據(jù)三角形的三邊關(guān)系確定第三邊的取值范圍,再根據(jù)不等式的性質(zhì)求出答案.【詳解】設(shè)第三邊長為x,∵有兩條邊分別為3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周長L=x+3+5,∴10<L<16,故答案為:10<L<16.【考點】此題考查三角形三邊關(guān)系,不等式的性質(zhì),熟記三角形的三邊關(guān)系確定出第三條邊長是解題的關(guān)鍵.四、解答題1、105°【解析】【分析】先根據(jù)三角形的外角性質(zhì)求出∠ADB,再根據(jù)三角形的外角性質(zhì)計算即可.【詳解】解:∵∠ADB=∠B+∠C,∠B=45°,∠C=40°,∴∠ADB=40°+45°=85°,∵∠DFE=∠A+∠ADB,∠A=20°,∴∠DFE=85°+20°=105°.【考點】本題考查的是三角形的外角性質(zhì),掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.2、(1)見解析;(2)100【解析】【分析】(1)根據(jù)∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,可得∠ABE=∠DCE,∠CBE=∠BCE,推出BE=CE,由此利用SAS證明△ABE≌△DCE;······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······(1)證明:∵∠ABC=∠BCD,BE,CE分別是∠ABC,∠BCD的角平分線,∴∠ABE=∠CBE=∠ABC,∠BCE=∠DCE=∠BCD,∴∠ABE=∠DCE,∠CBE=∠BCE,∴BE=CE,又∵AB=CD,∴△ABE≌△DCE(SAS);(2)∵△ABE≌△DCE,∴∠D=∠A=80°,∵五邊形ABCDE的內(nèi)角和為,∴∠AED=,故答案為:100.【考點】此題考查了全等三角形的判定及性質(zhì),多邊形內(nèi)角和計算,正確掌握全等三角形的判定及性質(zhì)定理是解題的關(guān)鍵.3、(1)∠CAE=18°;(2)∠ACD=120°.【解析】【分析】(1)由題意根據(jù)∠BAC=90°列出關(guān)于∠1、∠2的方程求解即可得到∠2的度數(shù),再根據(jù)同角的余角相等求出∠CAE=∠2,從而得解;(2)根據(jù)∠ACB和∠DCE的度數(shù)列出等式求出∠ACE﹣∠BCD=30°,再結(jié)合已知條件求出∠BCD,然后由∠ACD=∠ACB+∠BCD并代入數(shù)據(jù)計算即可得解.【詳解】解:(1)∵∠BAC=90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE=90°,∴∠1+∠CAE=∠2+∠1=90°,∴∠CAE=∠2=18°;(2)∵∠ACE+∠BCE=90°,∠BCD+∠BCE=60°,∴∠ACE﹣∠BCD=30°,又∠ACE=2∠BCD,∴2∠BCD﹣∠BCD=30°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=90°+30°=120°.【考點】本題考查三角形的外角性質(zhì),三角形的內(nèi)角和定理,準(zhǔn)確識圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.4、(1)CM=AN+MN,詳見解析;(2)CM=MN﹣AN,詳見解析【解析】【分析】(1)在AC上截取CD=AN,連接OD,證明△CDO≌△ANO,根據(jù)全等三角形的性質(zhì)得到OD=ON,······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓·······線······○······封······○······密······○······內(nèi)······○······號學(xué) 級年 名姓······線······○······封······○······密······○······外······○······(2)在AC延長線上截取CD=AN,連接OD,仿照(1)的方法解答.【詳解】解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,連接OD,∵△ABC為等邊三角形,∠BAC與∠ACB的角平分線交于點O,∴∠OAC=∠OCA=30°,∴OA=OC,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∵∠MON=60°,∴∠COD+∠AOM=60°,∵∠AOC=120°,∴∠DOM=60°,在△DMO和△NMO中,,∴△DMO≌△NMO,∴DM=MN,∴CM=CD+DM=AN+MN;(2)補全圖形如圖2所示:CM=MN﹣AN,理由如下:在AC延長線上截取CD=AN,連接OD,在△CDO和△ANO中,,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∴∠DOM=∠NOM,在△DMO和△NMO中,······線······○······封······○······密······○······內(nèi)······○······號學(xué) ······線······○······封······○······密··

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論