版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆山東省蒙陰中考數(shù)學(xué)考試模擬沖刺卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.關(guān)于的方程有實(shí)數(shù)根,則滿足()A. B.且 C.且 D.2.如圖,已知△ADE是△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)所得,其中點(diǎn)D在射線AC上,設(shè)旋轉(zhuǎn)角為α,直線BC與直線DE交于點(diǎn)F,那么下列結(jié)論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α3.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠44.今年,我省啟動(dòng)了“關(guān)愛(ài)留守兒童工程”.某村小為了了解各年級(jí)留守兒童的數(shù)量,對(duì)一到六年級(jí)留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級(jí)的留守兒童人數(shù)分別為10,15,10,17,18,1.對(duì)于這組數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是()A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是5.下列圖形中,屬于中心對(duì)稱(chēng)圖形的是()A. B.C. D.6.如圖,函數(shù)y=kx+b(k≠0)與y=(m≠0)的圖象交于點(diǎn)A(2,3),B(-6,-1),則不等式kx+b>的解集為()A. B. C. D.7.如圖1,點(diǎn)O為正六邊形對(duì)角線的交點(diǎn),機(jī)器人置于該正六邊形的某頂點(diǎn)處,柱柱同學(xué)操控機(jī)器人以每秒1個(gè)單位長(zhǎng)度的速度在圖1中給出線段路徑上運(yùn)行,柱柱同學(xué)將機(jī)器人運(yùn)行時(shí)間設(shè)為t秒,機(jī)器人到點(diǎn)A的距離設(shè)為y,得到函數(shù)圖象如圖2,通過(guò)觀察函數(shù)圖象,可以得到下列推斷:①該正六邊形的邊長(zhǎng)為1;②當(dāng)t=3時(shí),機(jī)器人一定位于點(diǎn)O;③機(jī)器人一定經(jīng)過(guò)點(diǎn)D;④機(jī)器人一定經(jīng)過(guò)點(diǎn)E;其中正確的有()A.①④ B.①③ C.①②③ D.②③④8.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無(wú)法計(jì)算9.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.a(chǎn)﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+410.如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說(shuō)法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個(gè)A.1 B.2 C.3 D.411.如圖,正方形ABCD的邊長(zhǎng)為2cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C的方向運(yùn)動(dòng)到點(diǎn)C停止,設(shè)點(diǎn)P的運(yùn)動(dòng)路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是()A. B. C. D.12.菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,H為AD邊中點(diǎn),菱形ABCD的周長(zhǎng)為28,則OH的長(zhǎng)等于()A.3.5 B.4 C.7 D.14二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.估計(jì)無(wú)理數(shù)在連續(xù)整數(shù)___與____之間.14.邊長(zhǎng)為6的正六邊形外接圓半徑是_____.15.如圖,在邊長(zhǎng)為9的正三角形ABC中,BD=3,∠ADE=60°,則AE的長(zhǎng)為.16.函數(shù)的圖象不經(jīng)過(guò)第__________象限.17.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點(diǎn)A,B,C;直線DF分別交l1,l2,l3于點(diǎn)D,E,F(xiàn).AC與DF相交于點(diǎn)H,且AH=2,HB=1,BC=5,則DEEF的值為18.關(guān)于x的方程(m﹣5)x2﹣3x﹣1=0有兩個(gè)實(shí)數(shù)根,則m滿足_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)某化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工材料若干千克,價(jià)格為每千克40元,物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克70元,不低于每千克40元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),日銷(xiāo)量y(千克)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),且當(dāng)x=70時(shí),y=80;x=60時(shí),y=1.在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用350元.求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;求該公司銷(xiāo)售該原料日獲利w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大利潤(rùn)是多少元?20.(6分)用你發(fā)現(xiàn)的規(guī)律解答下列問(wèn)題.┅┅計(jì)算.探究.(用含有的式子表示)若的值為,求的值.21.(6分)有這樣一個(gè)問(wèn)題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對(duì)應(yīng)值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_(kāi)______;(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;(4)觀察圖象,寫(xiě)出該函數(shù)的兩條性質(zhì)________.22.(8分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過(guò)點(diǎn)C作AD的垂線交AB的延長(zhǎng)線于點(diǎn)G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.23.(8分)在數(shù)學(xué)上,我們把符合一定條件的動(dòng)點(diǎn)所形成的圖形叫做滿足該條件的點(diǎn)的軌跡.例如:動(dòng)點(diǎn)P的坐標(biāo)滿足(m,m﹣1),所有符合該條件的點(diǎn)組成的圖象在平面直角坐標(biāo)系xOy中就是一次函數(shù)y=x﹣1的圖象.即點(diǎn)P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是;(2)若點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離與到直線y=﹣1的距離相等,求點(diǎn)P的軌跡;(3)若拋物線y=上有兩動(dòng)點(diǎn)M、N滿足MN=a(a為常數(shù),且a≥4),設(shè)線段MN的中點(diǎn)為Q,求點(diǎn)Q到x軸的最短距離.24.(10分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)M是第二象限內(nèi)拋物線上一點(diǎn),BM交y軸于N.(1)求點(diǎn)A、B的坐標(biāo);(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.25.(10分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當(dāng)AB為直徑,求證:;(2)如圖2,當(dāng)AB為非直徑的弦,連接OB,則(1)的結(jié)論是否成立?若成立請(qǐng)證明,不成立說(shuō)明由;(3)如圖3,在(2)的條件下,作于E,交CD于點(diǎn)F,連接ED,且,若,,求CF的長(zhǎng)度.26.(12分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.27.(12分)“C919”大型客機(jī)首飛成功,激發(fā)了同學(xué)們對(duì)航空科技的興趣,如圖是某校航模興趣小組獲得的一張數(shù)據(jù)不完整的航模飛機(jī)機(jī)翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請(qǐng)根據(jù)圖中數(shù)據(jù),求出線段BE和CD的長(zhǎng).(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結(jié)果保留小數(shù)點(diǎn)后一位)
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
分類(lèi)討論:當(dāng)a=5時(shí),原方程變形一元一次方程,有一個(gè)實(shí)數(shù)解;當(dāng)a≠5時(shí),根據(jù)判別式的意義得到a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時(shí),原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時(shí),△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時(shí),方程有兩個(gè)實(shí)數(shù)根,所以a的取值范圍為a≥1.故選A.【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.也考查了一元二次方程的定義.2、D【解析】
利用旋轉(zhuǎn)不變性即可解決問(wèn)題.【詳解】∵△DAE是由△BAC旋轉(zhuǎn)得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)不變性解決問(wèn)題,屬于中考??碱}型.3、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對(duì)頂角,不能判斷a與b是否平行,故D錯(cuò)誤.故選D.考點(diǎn):平行線的判定.4、C【解析】
解:中位數(shù)應(yīng)該是15和17的平均數(shù)16,故C選項(xiàng)錯(cuò)誤,其他選擇正確.故選C.【點(diǎn)睛】本題考查求中位數(shù),眾數(shù),方差,理解相關(guān)概念是本題的解題關(guān)鍵.5、B【解析】
A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱(chēng)圖形.【詳解】A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱(chēng)圖形;B、將此圖形繞中心點(diǎn)旋轉(zhuǎn)180度與原圖重合,所以這個(gè)圖形是中心對(duì)稱(chēng)圖形;C、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱(chēng)圖形;D、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱(chēng)圖形.故選B.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)與中心對(duì)稱(chēng)圖形的概念:中心對(duì)稱(chēng)圖形是要尋找對(duì)稱(chēng)中心,旋轉(zhuǎn)180度后與原圖重合.6、B【解析】
根據(jù)函數(shù)的圖象和交點(diǎn)坐標(biāo)即可求得結(jié)果.【詳解】解:不等式kx+b>的解集為:-6<x<0或x>2,
故選B.【點(diǎn)睛】此題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.7、C【解析】
根據(jù)圖象起始位置猜想點(diǎn)B或F為起點(diǎn),則可以判斷①正確,④錯(cuò)誤.結(jié)合圖象判斷3≤t≤4圖象的對(duì)稱(chēng)性可以判斷②正確.結(jié)合圖象易得③正確.【詳解】解:由圖象可知,機(jī)器人距離點(diǎn)A1個(gè)單位長(zhǎng)度,可能在F或B點(diǎn),則正六邊形邊長(zhǎng)為1.故①正確;觀察圖象t在3-4之間時(shí),圖象具有對(duì)稱(chēng)性則可知,機(jī)器人在OB或OF上,則當(dāng)t=3時(shí),機(jī)器人距離點(diǎn)A距離為1個(gè)單位長(zhǎng)度,機(jī)器人一定位于點(diǎn)O,故②正確;所有點(diǎn)中,只有點(diǎn)D到A距離為2個(gè)單位,故③正確;因?yàn)闄C(jī)器人可能在F點(diǎn)或B點(diǎn)出發(fā),當(dāng)從B出發(fā)時(shí),不經(jīng)過(guò)點(diǎn)E,故④錯(cuò)誤.故選:C.【點(diǎn)睛】本題為動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象探究題,解答時(shí)要注意動(dòng)點(diǎn)到達(dá)臨界前后時(shí)圖象的變化趨勢(shì).8、B【解析】
有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時(shí)針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時(shí),S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點(diǎn)睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.9、C【解析】
直接利用同底數(shù)冪的乘除運(yùn)算法則、負(fù)指數(shù)冪的性質(zhì)、二次根式的加減運(yùn)算法則、平方差公式分別計(jì)算即可得出答案.【詳解】A、a3?a2=a5,故A選項(xiàng)錯(cuò)誤;B、a﹣2=,故B選項(xiàng)錯(cuò)誤;C、3﹣2=,故C選項(xiàng)正確;D、(a+2)(a﹣2)=a2﹣4,故D選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了同底數(shù)冪的乘除運(yùn)算以及負(fù)指數(shù)冪的性質(zhì)以及二次根式的加減運(yùn)算、平方差公式,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.10、D【解析】
先由兩組對(duì)邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個(gè)角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對(duì)角相等,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等又得到一對(duì)角相等,等量代換可得∠EAD=∠EDA,利用等角對(duì)等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說(shuō)法的個(gè)數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項(xiàng)①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項(xiàng)②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項(xiàng)③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項(xiàng)④正確,則其中正確的個(gè)數(shù)有4個(gè).故選D.【點(diǎn)睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識(shí)有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.11、B【解析】
△ADP的面積可分為兩部分討論,由A運(yùn)動(dòng)到B時(shí),面積逐漸增大,由B運(yùn)動(dòng)到C時(shí),面積不變,從而得出函數(shù)關(guān)系的圖象.【詳解】解:當(dāng)P點(diǎn)由A運(yùn)動(dòng)到B點(diǎn)時(shí),即0≤x≤2時(shí),y=×2x=x,當(dāng)P點(diǎn)由B運(yùn)動(dòng)到C點(diǎn)時(shí),即2<x<4時(shí),y=×2×2=2,符合題意的函數(shù)關(guān)系的圖象是B;故選B.【點(diǎn)睛】本題考查了動(dòng)點(diǎn)函數(shù)圖象問(wèn)題,用到的知識(shí)點(diǎn)是三角形的面積、一次函數(shù),在圖象中應(yīng)注意自變量的取值范圍.12、A【解析】
根據(jù)菱形的四條邊都相等求出AB,菱形的對(duì)角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長(zhǎng)為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點(diǎn),∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點(diǎn)睛】本題考查了菱形的對(duì)角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、34【解析】
先找到與11相鄰的平方數(shù)9和16,求出算術(shù)平方根即可解題.【詳解】解:∵,∴,∴無(wú)理數(shù)在連續(xù)整數(shù)3與4之間.【點(diǎn)睛】本題考查了無(wú)理數(shù)的估值,屬于簡(jiǎn)單題,熟記平方數(shù)是解題關(guān)鍵.14、6【解析】
根據(jù)正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,∴邊長(zhǎng)為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形是解題的關(guān)鍵.15、7【解析】試題分析:∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.16、三.【解析】
先根據(jù)一次函數(shù)判斷出函數(shù)圖象經(jīng)過(guò)的象限,進(jìn)而可得出結(jié)論.【詳解】解:∵一次函數(shù)中,此函數(shù)的圖象經(jīng)過(guò)一、二、四象限,不經(jīng)過(guò)第三象限,故答案為:三.【點(diǎn)睛】本題考查的是一次函數(shù)的性質(zhì),即一次函數(shù)中,當(dāng),時(shí),函數(shù)圖象經(jīng)過(guò)一、二、四象限.17、3【解析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點(diǎn):平行線分線段成比例.18、m≥且m≠1.【解析】
根據(jù)一元二次方程的定義和判別式的意義得到m﹣1≠0且然后求出兩個(gè)不等式的公共部分即可.【詳解】解:根據(jù)題意得m﹣1≠0且解得且m≠1.故答案為:且m≠1.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)當(dāng)銷(xiāo)售單價(jià)為70元時(shí),該公司日獲利最大,為2050元.【解析】
(1)根據(jù)y與x成一次函數(shù)解析式,設(shè)為y=kx+b(k≠0),把x與y的兩對(duì)值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據(jù)利潤(rùn)=單價(jià)×銷(xiāo)售量,列出w關(guān)于x的二次函數(shù)解析式即可;(3)利用二次函數(shù)的性質(zhì)求出w的最大值,以及此時(shí)x的值即可.【詳解】(1)設(shè)y=kx+b(k≠0),根據(jù)題意得,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70時(shí),w有最大值為w=﹣2×25+21=2050元,∴當(dāng)銷(xiāo)售單價(jià)為70元時(shí),該公司日獲利最大,為2050元.【點(diǎn)睛】此題考查了二次函數(shù)的應(yīng)用,待定系數(shù)法求一次函數(shù)解析式,以及二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)性質(zhì)是解本題的關(guān)鍵.20、解:(1);(2);(3)n=17.【解析】
(1)、根據(jù)給出的式子將各式進(jìn)行拆開(kāi),然后得出答案;(2)、根據(jù)給出的式子得出規(guī)律,然后根據(jù)規(guī)律進(jìn)行計(jì)算;(3)、根據(jù)題意將式子進(jìn)行展開(kāi),然后列出關(guān)于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點(diǎn):規(guī)律題.21、(1)任意實(shí)數(shù);(2);(3)見(jiàn)解析;(4)①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.【解析】
(1)沒(méi)有限定要求,所以x為任意實(shí)數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點(diǎn),連線即可解題,(4)看圖確定極點(diǎn)坐標(biāo),即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實(shí)數(shù);故答案為任意實(shí)數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.故答案為①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.【點(diǎn)睛】本題考查了函數(shù)的圖像和性質(zhì),屬于簡(jiǎn)單題,熟悉函數(shù)的圖像和概念是解題關(guān)鍵.22、(1)48°(1)證明見(jiàn)解析(3)【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對(duì)的圓周角相等,根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系可得結(jié)論;
(3)過(guò)O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過(guò)O作OG⊥AB于G,設(shè)CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點(diǎn)睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關(guān)鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設(shè)未知數(shù),根據(jù)勾股定理列方程解決問(wèn)題.23、(1);(2)y=x2;(3)點(diǎn)Q到x軸的最短距離為1.【解析】
(1)先判斷出m(n﹣1)=6,進(jìn)而得出結(jié)論;(2)先求出點(diǎn)P到點(diǎn)A的距離和點(diǎn)P到直線y=﹣1的距離建立方程即可得出結(jié)論;(3)設(shè)出點(diǎn)M,N的坐標(biāo),進(jìn)而得出點(diǎn)Q的坐標(biāo),利用MN=a,得出,即可得出結(jié)論.【詳解】(1)設(shè)m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是故答案為:;(2)∴點(diǎn)P(x,y)到點(diǎn)A(0,1),∴點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離的平方為x2+(y﹣1)2,∵點(diǎn)P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設(shè)直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點(diǎn)為Q的縱坐標(biāo)為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點(diǎn)Q到x軸的最短距離為1.【點(diǎn)睛】此題是二次函數(shù)綜合題,主要考查了點(diǎn)的軌跡的定義,兩點(diǎn)間的距離公式,中點(diǎn)坐標(biāo)公式公式,根與系數(shù)的關(guān)系,確定出是解本題的關(guān)鍵.24、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設(shè)y=0,可求x的值,即求A,B的坐標(biāo);(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點(diǎn)坐標(biāo),可得ON的長(zhǎng)度,根據(jù)S△BMC=,可求a的值;(3)過(guò)M點(diǎn)作ME∥AB,設(shè)NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點(diǎn)坐標(biāo),代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設(shè)y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵M(jìn)D⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴當(dāng)x=﹣3時(shí),y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根據(jù)題意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如圖2:過(guò)M點(diǎn)作ME∥AB,∵M(jìn)E∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,設(shè)NO=m,=k(k>0),∵M(jìn)E∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(k+1)(9k﹣12),∴=9k-12,∴k=,∴.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是函數(shù)解析式的求法,二次函數(shù)的圖象和性質(zhì),是二次函數(shù)與解析幾何知識(shí)的綜合應(yīng)用,難度較大.25、(1)見(jiàn)解析;(2)成立;(3)【解析】
(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長(zhǎng)CG交AK于M,延長(zhǎng)KO交⊙O于N,連接CN、AN,求出關(guān)于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長(zhǎng)AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長(zhǎng)CG交AK于M,則,,∴,∴,延長(zhǎng)KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點(diǎn),∵O為KN的中點(diǎn),∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年獨(dú)家居間服務(wù)協(xié)議模板特色說(shuō)明
- 汽車(chē)性能研發(fā)課程設(shè)計(jì)
- 皮膚保濕液化妝品相關(guān)項(xiàng)目實(shí)施方案
- 城市道路養(yǎng)護(hù)服務(wù)2024年標(biāo)準(zhǔn)承包協(xié)議版
- 水塔水位winccplc課程設(shè)計(jì)
- 美味套餐課程設(shè)計(jì)
- 烤箱用手套相關(guān)項(xiàng)目建議書(shū)
- 2024年銷(xiāo)售合作伙伴協(xié)議標(biāo)準(zhǔn)版版
- 電子跑馬燈課課程設(shè)計(jì)
- 數(shù)字秒表課程設(shè)計(jì)緒論
- 小學(xué)生主題班會(huì)課件-勇于承認(rèn)錯(cuò)誤-學(xué)會(huì)道歉-通用版
- 第八講 發(fā)展全過(guò)程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 大學(xué)生安全教育(綜合篇)學(xué)習(xí)通課后章節(jié)答案期末考試題庫(kù)2023年
- 肝衰竭護(hù)理查房-課件
- 貴州貴陽(yáng)觀山湖富民村鎮(zhèn)銀行招聘考試真題2022
- DB22-T 5131-2022 預(yù)拌盾構(gòu)砂漿應(yīng)用技術(shù)標(biāo)準(zhǔn)
- 種蛋購(gòu)銷(xiāo)合同
- 學(xué)前兒童數(shù)學(xué)教育PPT全套教學(xué)課件
- 比亞迪新能源汽車(chē)分析五力模型
- 面向雙碳戰(zhàn)略,打造物流企業(yè)零碳路線圖 2023 -智慧貨運(yùn)中心 宋蘇
- 教育信息處理教學(xué)分析第四章
評(píng)論
0/150
提交評(píng)論