2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁(yè)
2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁(yè)
2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁(yè)
2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁(yè)
2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年遼寧省沈陽(yáng)市鐵西區(qū)畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖所示是放置在正方形網(wǎng)格中的一個(gè),則的值為()A. B. C. D.2.如圖所示,從☉O外一點(diǎn)A引圓的切線AB,切點(diǎn)為B,連接AO并延長(zhǎng)交圓于點(diǎn)C,連接BC,已知∠A=26°,則∠ACB的度數(shù)為()A.32° B.30° C.26° D.13°3.計(jì)算4+(﹣2)2×5=()A.﹣16B.16C.20D.244.單項(xiàng)式2a3b的次數(shù)是()A.2 B.3 C.4 D.55.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.據(jù)《關(guān)于“十三五”期間全面深入推進(jìn)教育信息化工作的指導(dǎo)意見》顯示,全國(guó)6000萬(wàn)名師生已通過(guò)“網(wǎng)絡(luò)學(xué)習(xí)空間”探索網(wǎng)絡(luò)條件下的新型教學(xué)、學(xué)習(xí)與教研模式,教育公共服務(wù)平臺(tái)基本覆蓋全國(guó)學(xué)生、教職工等信息基礎(chǔ)數(shù)據(jù)庫(kù),實(shí)施全國(guó)中小學(xué)教師信息技術(shù)應(yīng)用能力提升工程.則數(shù)字6000萬(wàn)用科學(xué)記數(shù)法表示為()A.6×105 B.6×106 C.6×107 D.6×1087.已知點(diǎn)A、B、C是直徑為6cm的⊙O上的點(diǎn),且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°

B.75°或15°

C.105°或15°

D.75°或105°8.已知直線y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(guò)(

)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限9.如圖1,在矩形ABCD中,動(dòng)點(diǎn)E從A出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過(guò)點(diǎn)E做FE⊥AE,交CD于F點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)E在BC上運(yùn)動(dòng)時(shí),F(xiàn)C的最大長(zhǎng)度是,則矩形ABCD的面積是()A. B.5 C.6 D.10.若關(guān)于x的不等式組只有5個(gè)整數(shù)解,則a的取值范圍()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點(diǎn),若點(diǎn)P是y軸上任意一點(diǎn),則△PAB的面積是_____.12.如圖,某數(shù)學(xué)興趣小組將邊長(zhǎng)為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細(xì)),則所得的扇形ABD的面積為_____.13.如圖,直線a∥b,直線c分別于a,b相交,∠1=50°,∠2=130°,則∠3的度數(shù)為()A.50° B.80° C.100° D.130°14.如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=43,則S陰影=_____.15.分解因式:a3-12a2+36a=______.16.如圖,已知矩形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結(jié)論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結(jié)論是_____.(把正確結(jié)論的序號(hào)都填上)17.如圖,在平面直角坐標(biāo)系xOy中,直線l:y=x-與x軸交于點(diǎn)B1,以O(shè)B1為邊長(zhǎng)作等邊三角形A1OB1,過(guò)點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過(guò)點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,按此規(guī)律進(jìn)行下去,則點(diǎn)A3的橫坐標(biāo)為______;點(diǎn)A2018的橫坐標(biāo)為______.三、解答題(共7小題,滿分69分)18.(10分)小強(qiáng)想知道湖中兩個(gè)小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測(cè)點(diǎn)M處,測(cè)得亭A在點(diǎn)M的北偏東30°,亭B在點(diǎn)M的北偏東60°,當(dāng)小明由點(diǎn)M沿小道I向東走60米時(shí),到達(dá)點(diǎn)N處,此時(shí)測(cè)得亭A恰好位于點(diǎn)N的正北方向,繼續(xù)向東走30米時(shí)到達(dá)點(diǎn)Q處,此時(shí)亭B恰好位于點(diǎn)Q的正北方向,根據(jù)以上測(cè)量數(shù)據(jù),請(qǐng)你幫助小強(qiáng)計(jì)算湖中兩個(gè)小亭A、B之間的距離.19.(5分)已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.20.(8分)李寧準(zhǔn)備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請(qǐng)你解二元一次方程組;張老師說(shuō):“你猜錯(cuò)了”,我看到該題標(biāo)準(zhǔn)答案的結(jié)果x、y是一對(duì)相反數(shù),通過(guò)計(jì)算說(shuō)明原題中“□”是幾?21.(10分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.(1)求拋物線的表達(dá)式;(2)設(shè)拋物線的對(duì)稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達(dá)式;②求P點(diǎn)到直線BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).22.(10分)如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線l∥AB,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),直線PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線PB與直線AC交于點(diǎn)E.求∠BAC的度數(shù);當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;在點(diǎn)P的運(yùn)動(dòng)過(guò)程中①當(dāng)點(diǎn)A在線段PB的中垂線上或點(diǎn)B在線段PA的中垂線上時(shí),求出所有滿足條件的∠ACD的度數(shù);②設(shè)⊙O的半徑為6,點(diǎn)E到直線l的距離為3,連結(jié)BD,DE,直接寫出△BDE的面積.23.(12分)今年義烏市準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市,某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購(gòu)買2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案所需資金最少?最少是多少元?24.(14分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購(gòu)”給我們的生活帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息求出,;請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

首先過(guò)點(diǎn)A向CB引垂線,與CB交于D,表示出BD、AD的長(zhǎng),根據(jù)正切的計(jì)算公式可算出答案.【詳解】解:過(guò)點(diǎn)A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點(diǎn)睛】此題主要考查了銳角三角函數(shù)的定義,關(guān)鍵是掌握正切:銳角A的對(duì)邊a與鄰邊b的比叫做∠A的正切,記作tanA.2、A【解析】

連接OB,根據(jù)切線的性質(zhì)和直角三角形的兩銳角互余求得∠AOB=64°,再由等腰三角形的性質(zhì)可得∠C=∠OBC,根據(jù)三角形外角的性質(zhì)即可求得∠ACB的度數(shù).【詳解】連接OB,∵AB與☉O相切于點(diǎn)B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故選A.【點(diǎn)睛】本題考查了切線的性質(zhì),利用切線的性質(zhì),結(jié)合三角形外角的性質(zhì)求出角的度數(shù)是解決本題的關(guān)鍵.3、D【解析】分析:根據(jù)有理數(shù)的乘方、乘法和加法可以解答本題.詳解:4+(﹣2)2×5=4+4×5=4+20=24,故選:D.點(diǎn)睛:本題考查有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計(jì)算方法.4、C【解析】分析:根據(jù)單項(xiàng)式的性質(zhì)即可求出答案.詳解:該單項(xiàng)式的次數(shù)為:3+1=4故選C.點(diǎn)睛:本題考查單項(xiàng)式的次數(shù)定義,解題的關(guān)鍵是熟練運(yùn)用單項(xiàng)式的次數(shù)定義,本題屬于基礎(chǔ)題型.5、C【解析】

根據(jù)圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng),列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長(zhǎng)是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長(zhǎng)等于側(cè)面展開圖的扇形半徑;圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng)正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.6、C【解析】

將一個(gè)數(shù)寫成的形式,其中,n是正數(shù),這種記數(shù)的方法叫做科學(xué)記數(shù)法,根據(jù)定義解答即可.【詳解】解:6000萬(wàn)=6×1.故選:C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法,當(dāng)所表示的數(shù)的絕對(duì)值大于1時(shí),n為正整數(shù),其值等于原數(shù)中整數(shù)部分的數(shù)位減去1,當(dāng)要表示的數(shù)的絕對(duì)值小于1時(shí),n為負(fù)整數(shù),其值等于原數(shù)中第一個(gè)非零數(shù)字前面所有零的個(gè)數(shù)的相反數(shù),正確掌握科學(xué)記數(shù)法中n的值的確定是解題的關(guān)鍵.7、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點(diǎn)睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識(shí),掌握直徑所對(duì)的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關(guān)鍵,注意分情況討論思想的運(yùn)用.8、D【解析】

根據(jù)直線y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,可以判斷a、b的正負(fù),從而可以判斷直線y=bx-a經(jīng)過(guò)哪幾個(gè)象限,不經(jīng)過(guò)哪個(gè)象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過(guò)第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過(guò)第一、二、三象限,不經(jīng)過(guò)第四象限,故選D.【點(diǎn)睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.9、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對(duì)稱性可得E在BC中點(diǎn)時(shí),CF有最大值,列出方程式即可解題.【詳解】若點(diǎn)E在BC上時(shí),如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對(duì)稱性可得E在BC中點(diǎn)時(shí),CF有最大值,此時(shí),BE=CE=x﹣,即,∴,當(dāng)y=時(shí),代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點(diǎn)睛】本題考查了二次函數(shù)頂點(diǎn)問(wèn)題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計(jì)算,本題中由圖象得出E為BC中點(diǎn)是解題的關(guān)鍵.10、A【解析】

分別解兩個(gè)不等式得到得x<20和x>3-2a,由于不等式組只有5個(gè)整數(shù)解,則不等式組的解集為3-2a<x<20,且整數(shù)解為15、16、17、18、19,得到14≤3-2a<15,然后再解關(guān)于a的不等式組即可.【詳解】解①得x<20

解②得x>3-2a,

∵不等式組只有5個(gè)整數(shù)解,

∴不等式組的解集為3-2a<x<20,

∴14≤3-2a<15,故選:A【點(diǎn)睛】本題主要考查對(duì)不等式的性質(zhì),解一元一次不等式,一元一次不等式組的整數(shù)解等知識(shí)點(diǎn)的理解和掌握,能求出不等式14≤3-2a<15是解此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點(diǎn),∴點(diǎn)P到直線BC的距離為1.∴△PAB的面積.故答案為:.12、25【解析】試題解析:由題意13、B【解析】

根據(jù)平行線的性質(zhì)即可解決問(wèn)題【詳解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故選B.【點(diǎn)睛】考查平行線的性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì),屬于中考基礎(chǔ)題.14、8π3【解析】

根據(jù)垂徑定理求得CE=ED=23,然后由圓周角定理知∠DOE=60°,然后通過(guò)解直角三角形求得線段OD、OE的長(zhǎng)度,最后將相關(guān)線段的長(zhǎng)度代入S陰影=S扇形ODB-S△DOE+S【詳解】如圖,假設(shè)線段CD、AB交于點(diǎn)E,∵AB是O的直徑,弦CD⊥AB,∴CE=ED=2又∵∠BCD=30∴∠DOE=2∠BCD=60∴OE=DE∴S陰影=S扇形ODB?S△DOE+S△BEC=60故答案為:8π3【點(diǎn)睛】考查圓周角定理,垂徑定理,扇形面積的計(jì)算,熟練掌握扇形的面積公式是解題的關(guān)鍵.15、a(a-6)2【解析】

原式提取a,再利用完全平方公式分解即可.【詳解】原式=a(a2-12a+36)=a(a-6)2,故答案為a(a-6)2【點(diǎn)睛】本題考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解題的關(guān)鍵.16、①②【解析】

只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問(wèn)題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設(shè)DF平分∠ADC,則△ADF是等腰直角三角形,這個(gè)顯然不可能,故③錯(cuò)誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯(cuò)誤,故答案為①②.【點(diǎn)睛】本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、勾股定理、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.17、【解析】

利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)B1的坐標(biāo),根據(jù)等邊三角形的性質(zhì)可求出點(diǎn)A1的坐標(biāo),同理可得出點(diǎn)B2、A2、A3的坐標(biāo),根據(jù)點(diǎn)An坐標(biāo)的變化即可得出結(jié)論.【詳解】當(dāng)y=0時(shí),有x-=0,解得:x=1,∴點(diǎn)B1的坐標(biāo)為(1,0),∵A1OB1為等邊三角形,∴點(diǎn)A1的坐標(biāo)為(,).當(dāng)y=時(shí).有x-=,解得:x=,∴點(diǎn)B2的坐標(biāo)為(,),∵A2A1B2為等邊三角形,∴點(diǎn)A2的坐標(biāo)為(,).同理,可求出點(diǎn)A3的坐標(biāo)為(,),點(diǎn)A2018的坐標(biāo)為(,).故答案為;.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等邊三角形的性質(zhì)以及規(guī)律型中點(diǎn)的坐標(biāo),根據(jù)一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合等邊三角形的性質(zhì)找出點(diǎn)An橫坐標(biāo)的變化是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、1m【解析】

連接AN、BQ,過(guò)B作BE⊥AN于點(diǎn)E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長(zhǎng),在直角△ABE中,依據(jù)勾股定理即可求得AB的長(zhǎng).【詳解】連接AN、BQ,∵點(diǎn)A在點(diǎn)N的正北方向,點(diǎn)B在點(diǎn)Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過(guò)B作BE⊥AN于點(diǎn)E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個(gè)小亭A、B之間的距離為1米.【點(diǎn)睛】本題考查勾股定理、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題.19、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】

(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質(zhì),可得AD的長(zhǎng),又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點(diǎn):切線的判定;平行線的判定與性質(zhì);圓周角定理;相似三角形的判定與性質(zhì).20、(1);(2)-1【解析】

(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【詳解】解:(1)①+②得,.將時(shí)代入①得,,∴.(2)設(shè)“□”為a,∵x、y是一對(duì)相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【點(diǎn)睛】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關(guān)于a的方程是解(2)的關(guān)鍵.21、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時(shí),點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由見解析;(1)y=﹣x+1;P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【解析】【分析】(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達(dá)式;(2)連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,由點(diǎn)A、B的坐標(biāo)可得出對(duì)稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時(shí),由拋物線的對(duì)稱性可得出此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,再根據(jù)點(diǎn)C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點(diǎn)P、M的坐標(biāo);當(dāng)t≠2時(shí),不存在,利用平行四邊形對(duì)角線互相平分結(jié)合CE≠PE可得出此時(shí)不存在符合題意的點(diǎn)M;(1)①過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點(diǎn)P的坐標(biāo)可得出點(diǎn)F的坐標(biāo),進(jìn)而可得出PF的長(zhǎng)度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長(zhǎng)度,利用面積法可求出P點(diǎn)到直線BC的距離的最大值,再找出此時(shí)點(diǎn)P的坐標(biāo)即可得出結(jié)論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達(dá)式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對(duì)稱軸l于點(diǎn)E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點(diǎn),∴拋物線的對(duì)稱軸為直線x=1,當(dāng)t=2時(shí),點(diǎn)C、P關(guān)于直線l對(duì)稱,此時(shí)存在點(diǎn)M,使得四邊形CDPM是平行四邊形,∵拋物線的表達(dá)式為y=﹣x2+2x+1,∴點(diǎn)C的坐標(biāo)為(0,1),點(diǎn)P的坐標(biāo)為(2,1),∴點(diǎn)M的坐標(biāo)為(1,6);當(dāng)t≠2時(shí),不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點(diǎn)C的橫坐標(biāo)為0,點(diǎn)E的橫坐標(biāo)為0,∴點(diǎn)P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過(guò)點(diǎn)P作PF∥y軸,交BC于點(diǎn)F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點(diǎn)P的坐標(biāo)為(t,﹣t2+2t+1),∴點(diǎn)F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時(shí),S取最大值,最大值為.∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,1),∴線段BC=,∴P點(diǎn)到直線BC的距離的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點(diǎn)的坐標(biāo),利用待定系數(shù)法求出拋物線表達(dá)式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達(dá)式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點(diǎn)到直線BC的距離的最大值.22、(1)45°;(2)見解析;(3)①∠ACD=15°;∠ACD=105°;∠ACD=60°;∠ACD=120°;②36或.【解析】

(1)易得△ABC是等腰直角三角形,從而∠BAC=∠CBA=45°;(2)分當(dāng)B在PA的中垂線上,且P在右時(shí);B在PA的中垂線上,且P在左;A在PB的中垂線上,且P在右時(shí);A在PB的中垂線上,且P在左時(shí)四中情況求解;(3)①先說(shuō)明四邊形OHEF是正方形,再利用△DOH∽△DFE求出EF的長(zhǎng),然后利用割補(bǔ)法求面積;②根據(jù)△EPC∽△EBA可求PC=4,根據(jù)△PDC∽△PCA可求PD?PA=PC2=16,再根據(jù)S△ABP=S△ABC得到,利用勾股定理求出k2,然后利用三角形面積公式求解.【詳解】(1)解:(1)連接BC,∵AB是直徑,∴∠ACB=90°.∴△ABC是等腰直角三角形,∴∠BAC=∠CBA=45°;(2)解:∵,∴∠CDB=∠CDP=45°,CB=CA,∴CD平分∠BDP又∵CD⊥BP,∴BE=EP,即CD是PB的中垂線,∴CP=CB=CA,(3)①(Ⅰ)如圖2,當(dāng)B在PA的中垂線上,且P在右時(shí),∠ACD=15°;(Ⅱ)如圖3,當(dāng)B在PA的中垂線上,且P在左,∠ACD=105°;(Ⅲ)如圖4,A在PB的中垂線上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論