吉林大學機械學院本科畢業(yè)設(shè)計外文翻譯格式樣本_第1頁
吉林大學機械學院本科畢業(yè)設(shè)計外文翻譯格式樣本_第2頁
吉林大學機械學院本科畢業(yè)設(shè)計外文翻譯格式樣本_第3頁
吉林大學機械學院本科畢業(yè)設(shè)計外文翻譯格式樣本_第4頁
吉林大學機械學院本科畢業(yè)設(shè)計外文翻譯格式樣本_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

本科生畢業(yè)設(shè)計(論文)翻譯資料中文題目:配合新一代液力變矩器柴油動力線某些特性英文題目:somepropertiesofadieseldrivelinewithhydrodynamictorqueconvertersofthelastestgeneration學生姓名:學號:班級:專業(yè):機械工程及自動化指引教師:Somepropertiesofadieseldrivelinewithhydrodynamictorqueconvertersofthelatestgeneration

AbstractDynamicpropertiesofadrivelinewithacontrolledDieselengine,hydrodynamictransmissionmechanism,additionalgearingandaloading-workingmachineproducingcommonmonoharmonicloadingareinvestigated.Solutionofthedynamicproblemisbasedonphenomenologicalexperimentaldata:drivingtorque-speedcharacteristicinthepartoftheprimemoverandso-calledexternalstaticcharacteristicinthehydrotransmissionpart.Thenon-lineartaskissolvedbyamodifiedharmonicbalancemethodthatwasdescribedinprecedingpublicationsbytheauthor.Keywords:Machinedriveline;ControlledDieseldrive;Hydrodynamictorqueconverter;Workingmachine;Periodicloading;StationarydynamicstateNomenclatureandabbreviationsa,b---------Coulombandviscousnon-dimensionalfrictionlossesAi,Bi-------coefficientsinmathematicalexpressionoftorque-speedcharacteristici,im----------kinematictransmission,supplementarygearingtransmissionratioI,Iz-------meanreducedmomentofinertiaindrivingandloadingpartkλ,kK---------tangentslopesofλ(i)andK(i)curvesrespectivelyK-------------momenttransmissionM------------Diesel-enginemomentMD(ω,

z)----controlledtorque-speeddrivingcharacteristicMDmax(ω),MDmin(ω)---torque-speedcharacteristicformaximalandminimalfuelsupplyM1,(),M2,()---pumploadingmomentandturbinedrivingmomentMT1,MT2----frictionlossmomentindrivingandloadingpartMz,Mza----meanvalueandamplitudeofloadingmoment-------------hydrodynamicconvertercharacteristicradiust-------------timeT,TD------------WattregulatorandDiesel-enginetimeconstantu,z---------gasleverandregulatordisplacementw-----------commondynamicvariableε-----------regulatorstructuralparameterζ-----------regulatordampingratioλ-----------coefficientofrotationmomentν-----------loadingangularvelocity,π-------indexdenotingmeanvalueandperiodicalcomponent---------hydraulicmediumdensity----------rotationangleω1,(),ω2---pumpandturbineangularvelocityDM------Diesel-engineG,GD---additionalandWatt-regulatorgearingHdPT---hydrodynamicpowertransmissionIJ--------InjectorLM------loadingmechanism(workingmachine)P,R,T---pump,reactor,turbineArticleOutlineNomenclature1.Introduction2.Mathematicalmodelofthesystem3.Stationarydynamicsolutionatmonoharmonicloading4.Resultsevaluationandconcludingremarks1.IntroductionDynamicpropertiesofadriveline(actuatingunit)consistingofacontrolledDieselengine(DM),hydrodynamicpowertransmissionsystem(HdPT),additionalgearing(G)andaloadingmechanism(LM)orworkingmachineareinvestigated.Theworkingmachineloadstheprimemoverandthetransmissionswithaprescribedmoment.AsimpleidealisedschematiclayoutofthecompletesystemisgiveninFig.1.TheconsideredDieselengineisastandardproduction:ZETOR8002.1controlledbyamechanical(Watt’s)orelectronicregulatorRDgoverningfuelinjectorIJ.IntheplaceofthehydrodynamicpowertransmissiontherearegraduallyappliedhydrodynamictorqueconvertersofthelatestgenerationthathavebeenprojectedandtestedinWUSAM(ResearchandProjectingInstituteofMachinesandMechanisms),j.s.c.Zvolen,Slovakia.Theseconvertersrepresentathreecomponentassemblycomposedofarotationalpump(P),turbine(T)andareactor(R)thatmayrevolveinonedirectionasafreewheel.Advantageoftheseconvertersisthefactthattheirexternaldimensionsandthedimensionsoftheirindividualcomponentsareidenticalandtheymaybemutuallychangedandarbitrarilycombinedinordertoreachdemandedproperties.Theydifferonlybyinternalconfigurationandbladegeometry.Accordingto[1]uptonowmorethan70varioustypeshavebeenexperimentallytestedandfromthemtheoneshavebeenchosenthatoptimallyfulfilledrequiredproperties.Themechanicalsystemunderconsiderationrepresentsasophisticatedenergytransferchainfromasource––primemovertoworkingmechanism.Becauseeveryrealdriveisoffinitepower,anyperiodicloadingalwaysevokesvibrationsofallthedynamicvariableseventhoughwesupposealltheconnectingshaftsandgearingsrigidandbacklashfree.Theinfluenceofdynamicloadingontheprimemovermaybejustcontrolledbyasuitablechoiceofthetorqueconverter.

Fig.1.

SchematiclayoutoftheDieseldriveline.Inthepaperinfluenceofconstantandperiodicloadingontimecourseofallthedynamicvariablesofthesystem(andparticularlyonthevariablesoftheprimemover)isinvestigatedatapplicationofsomeselectedtypesofhydrodynamictorqueconvertersofthelatestgeneration.Forfulfillingthistaskitisnecessarytocreateasuitablemathematicalmodelofthewholecombinedsystemandthenfinditsstationarysolutioncorrespondingtoarequiredloading.2.MathematicalmodelofthesystemAtthebeginningitisnecessarytoemphasizethatmathematicalmodellingofthedrivelineinquestionisbased,inourapproach,onknowledgeofthepublishedphenomenologicaldata:stationarytorque-speedcharacteristicoftheprimemoverandso-calledexternalstaticcharacteristicoftheappliedhydrodynamictorqueconverter.ItisamuchsimplerprocessthanmodellingbasedonthermodynamicequationsofburningfuelmixtureintheDieselengineandonhydrodynamicequationsofrealstreamingworkingmediuminverycomplicatedcavitiesofthetorqueconverter.Thecharacteristicsareusuallygivenbymanufactureroftheindividualsystemcomponents.Thisisdifferentandsimplerapproachtosolutionoftheproblemthanonemayfinde.g.atIshihara[2],HrovatandTobler[3],KesyandKesy[4],Laptev[5]andsomeothers.Thederiveddimensionalandnon-dimensionalmathematicalmodelsofthemechanicalsystemareintroducedin[6].Thenon-dimensional,reduced,so-calledsingle-shaftmodel(inthedrivingandloadingpart),wasderivedintheformofcombinedsystemofthefollowingdifferentialandalgebraicequations:(1)(2)(3)(4)\o"ClicktoviewtheMathMLsource"M2=KM1,(5)\o"ClicktoviewtheMathMLsource"λ=λ(i),(6)\o"ClicktoviewtheMathMLsource"K=K(i),(7)(8)(9)wherethemeaningoftheindividualsymbolsisexplainedinnomenclature.Inthenon-dimensionalmodelallthedynamicvariablesandparametersareexpressedbymeansofproperlychosenrelativestandardquantitiessothatthemodelofthesystemmightbethemostsimple.Transformationoftheoriginalequationssystemtothenon-dimensionalformFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)isdescribedindetailin[6].Asforthiscitedpaper,itisnecessarytosaythattherelativestandardvalueofloadingangularfrequencyhasbeensettledaccordingtotherelation,whereindenominatorisrelativestandardvalueoftime.Forthisvalue,thetimeconstantoftheregulatorhasbeenjustchosen,i.e.,wheretherelateddimensionaldynamicvariablesaredistinguishedbyupperbars.Theintroducedmathematicalmodelhasninevariables:M,M1,ω1,z,λ,K,i,M2,ω2andtheirmeaningisexplainedinnomenclature.ThefirstthreeequationsrepresentmathematicmodeloftheprimemoverwhereininertiamomentIthereisincludedinertiamomentofthepumpandequivalentpartoftheworkingmediumbecausedrivingandpumpshaftsareconnectedbyarigidclutch.TherightsideofEq.(3)representsthecontrolledstationarytorque-speedcharacteristicforwhichitholds:\o"ClicktoviewtheMathMLsource"MD(ω1,z)=MDmax(ω1)-[MDmax(ω1)-MDmin(ω1)]z,(10)whereMDmax(ω1),MDmin(ω1)representitsnon-dimensionalextremebranchesformaximalandminimalfuelsupplyandzisthenon-dimensionalregulatordeviation.IftheexperimentallymeasureddependencesMDmax(ω1),MDmin(ω1)areexpressedbyseconddegreepolynomialsthenthecontrollednon-dimensionaltorque-speedcharacteristichastheform:(11)Fromtheintroducedmodelitisevidentthatatchosenparametervalueudrivingspeedgrowthcausesregulatordisplacementtoincreaseandfuelsupplytodecrease.Theidealisedcontrolledtorque-speedcharacteristicforachosenparametervalueu(gasleverdisplacement)isschematicallydepictedinFig.2.FromEq.(2)itisevidentthatthestructuralparameterεmustbechoseninsuchawaythatregulatorself-oscillationsshouldnotoccur.Eqs.Figs.(4),(5),(6),(7)and(8),inthesenseofconsiderationsin[6],representthedynamicequationsofthetorqueconverter.Eq.(9)representssimplifiedmotionequationoftheloadingmechanismunderassumptionthatthereducedinertiamomentIzdoesnotdependonrotationangle.Inthisreducedinertiamomentthereisinvolvedinertiamomentoftheturbinewithequivalentpartoftheworkingmediumtoo.Itisobviousthatinthisinertiamomentandinallmomentsoftheloadingmechanismthereisconsideredgearratioimofthesupplementarygearingoftheoriginallynon-reducedsystem.Eqs.Figs.(6)and(7)representtheexternalstaticcharacteristicofthehydrodynamictransmission,i.e.formaldependencesofλandKonthekinematicratioiandthedependencesaregivenforeveryconvertertypeingraphicalform.ThedynamicvariablesλandKaredefinedinnon-dimensionalformverysimplybynon-linearrelationsFigs.(4)and(5).Inageneralwaythesenon-dimensionalvariablesaredefinedbymeansofdimensionalvalues(distinguishedbyupperbars)asfollows:(12)whereindividualsymbolmeaningmaybefoundinnomenclature.Aswehavechosen(accordingtoFig.2)fortherelativestandardvalueofangularvelocitytheidlemotionangularvelocityoftheDieselengineatmaximalfuelsupply,i.e.atz

=

0,thenfromFigs.(4)and(12)itisevidentthattherelativestandardmomentvalueis(13)Itmeansthatiffortheapplieddrives?1andalltheappliedconvertertypeshaveequalcharacteristicradiusmandifweconsidermeanvaluekg

m?3atstationarythermicregimethentherelativestandardvalueofthemomentisN

mforalltheconsideredconvertertypes.Theexternalstaticcharacteristicsoftheappliedconverterswithinternallabelling:M350.222,M350.623M,M350.675,M350.72M3M,are(accordingtothemeasuringrecords[7])successivelyintroducedinFig.3(a)–(d).Whenthetorque-speedcharacteristicisknownandthemeasureddependencesFigs.(6)and(7)areatdisposal,itispossibletosolvethecombinedsystemofdifferentialandalgebraicequationsFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9).Thisisalittlecomplicatedtaskbecausethedifferentialandalgebraicequationsintheacceptedmathematicalmodelarenon-linear.Stationarydynamicstateofthesystemwascalculatedbyamodifiedharmonicbalancemethodthatisfullydescribedin[8].

Fig.2.

Idealiseddiagramofthedrivingtorque-speedcharacteristic.

Fig.3.

Externalstaticcharacteristicsofthehydrodynamicpowertransmissions:M350.222,M350.623M,M350.675,M350.72M33.StationarydynamicsolutionatmonoharmonicloadingInthissectionstationarysolutionofthesystemFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)willbelookedforalwayswiththesameprimemoverandsuccessivelyconsideringalltheconverterstypeswhoseexternalstaticcharacteristicsareintroducedinFig.3(a)–(d).Ifeachoftheninedynamicvariablesisdenotedbyacommonsymbolw

M,M1,ω1,z,λ,K,i,M2,ω2then,inaccordancewithappliedmethod,everydynamicvariablemaybeformallyexpressedasasumofitsmeananditscentredperiodiccomponent,i.e.:\o"ClicktoviewtheMathMLsource"w=w+wπ.(14)Followingthementionedmethod,onrestrictivepresumptionthatitholds:\o"ClicktoviewtheMathMLsource"MzaMz→wπw,(15)thesystemFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)splitsintotwoindependentsystemsofequations:asystemofnon-linearalgebraicequationsforcalculationwandacombinedsystemoflineariseddifferentialandalgebraicequationsforcalculationwπ.Ifoneconsidersthatfrictionlossesinthedrivingpartareimplicitlyexpressedalreadyinthetorque-speedcharacteristicofthedriveandintheexternalstaticcharacteristicoftheappliedhydrodynamictorqueconverterandfrictionlossesintheloadingpartaresupposedasacombinationofCoulombandviscousfriction,i.e.:\o"ClicktoviewtheMathMLsource"MT2=a+bω2,(16)thenthenon-linearalgebraicsystemhastheform:(17)Thecombinedsystemofthelineariseddifferentialandalgebraicequationsis(18)whereforwritingabbreviationitisdenoted:(19)ThesolutionprocessofbothequationsystemsFigs.(17)and(18)isintroducedin[8].Thesystemofnon-linearequations(17)wascalculatedforthreeparameterlevelsu(u

=

0.3,

0.4,

0.6)thatrespondto30%,40%,and60%ofthemaximalgasleverdisplacement.Toeachchosenparametervalueu,acertaindrivingangularvelocityintervalresponds.FromFig.2andfromEq.(2)itisevidentthatforachosenvalueuthecorrespondingmeandrivingangularvelocityvaluemustlieininterval:\o"ClicktoviewtheMathMLsource"ω1aω1ω1b,(20)whereforbordervaluesoftheintervalitholds:(21)Forthechosenparametervalueu

=

0.3andfordifferentmeanvaluesMz,thecalculatedmeanvaluesw(forthedrivelinewithgivendriveandalltheconsideredconvertertypes)areintroducedindiagramsinFig.4(a)–(d).Analogicalmeanvalueswofthesamevariablescorrespondingwiththeparameteru

=

0.4areinFig.5(a)–(d).Finally,thecalculatedmeanvalueswcorrespondingwithparameteru

=

0.6andidenticaltorqueconvertertypesaredepictedinFig.6(a)–(d).Hereitisimportanttoremindthatx-coordinatesinFig.4,F(xiàn)ig.5andFig.6representthemeanangularvelocityinterval(20)graduallyforparametersu

=

0.3,

0.4,

0.6andthedecimalfractionsonthissectiondenoteonlyitsdecimaldivision.FromthecalculatedmeanvalueswinFig.4,F(xiàn)ig.5andFig.6andfromtheintroducedexternalstaticcharacteristicsinFig.3acompletenineofthemeanvalueswcanbedeterminedforanymeanloadingvalueMzandestimatedlossmomentvalueMT2intheloadingpart.Whenthiscompleteninewisknownthenitispossible,inthesenseoftheappliedmethod,toconstructalltheconstantcoefficientsofthecombineddifferentialandalgebraicsystem(18)forcalculationwπ.Thissystemisalreadylinearandmaybesolvedbyknownclassicalmethods.Firstofall,wetakeinterestinstationarydynamicsolution.Insenseoftheprocedureonemayexpressthecentredperiodiccomponentofeverydynamicvariableintheform:\o"ClicktoviewtheMathMLsource"wπ=Mza(Wccosνt+Wssinνt),(22)wherenotationsWc,Wsrepresentcosineandsinecomponentsofthedynamicfactor(transmissibility)ofcorrespondingdynamicvariable.Detailedcomputingprocedureisintroducedin[8].Fortransmissibilityofthecentredperiodiccomponentofeverydynamicvariableitholds:(23)AsanexampleinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11therearesuccessivelyintroduceddynamiccharacteristicsofthecentredperiodiccomponentsofdynamicvariables:moment(M)andangularvelocityofthedrive(ω1),loadingmomentofthepump(M1),moment(M2)andangularvelocityoftheturbine(ω2)forthesystemwithhydrodynamicconverterM350.222andforchosenparametervalueu

=

0.4.Resultsaregivenintwoformsofdynamiccharacteristics,namelyasclassicfrequencyresponsefunctions(upperparts)andasNyquistdiagrams(lowerparts).Bothtypesofdynamiccharacteristicsarecalculatedforfourvaluesoftheloadingmechanisminertiamoment:kg

m2andforsupplementarygearratioim

=

1.EqualsectionsofloadingangularvelocityΔνwithvalueπcorrespondingtoequalsectionsonfrequencyresponsefunctionx-coordinatesareintheNyquistdiagramsseparatedbyboldpointsaswell.Indynamiccalculations,theDiesel-enginetimeconstants,regulatortimeconstantsandtheregulatordampingratioζ

=

0.55wereconsidered.TheleftpartsofthedynamiccharacteristicsinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11correspondtothedynamicregimewithmeanvalues:λ

=

0.111,K

=

3.12,

i

=

0.127,whicharequantifiedbyboldpointsontheleftthinverticalintheexternalstaticcharacteristicinFig.3(a),whentheconverterworksinso-calledfrictionclutchregime.Meanvaluesofdynamicvariables,correspondingtothisdynamicregime,are:M

=

0.0506,M2

=

0.158,ω1

=

0.673,ω2

=

0.0855,Mz

=

0.152,z

=

0.0849.ThesevaluesarealsoaccentuatedinFig.5(a)byboldpointsonthinverticalline.Inthisdynamicregimetheconverterworkswithmeantransferenergyefficiencyη

0.405.TherightpartsofthedynamiccharacteristicsintroducedinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11correspondtodynamicregimewithmeanvalues:λ

=

0.111,

K

=

1.1,i

=

0.74,representedbyboldpointsontherightthinverticalontheexternalstaticcharacteristicinFig.3(a)whentheconverterworksinso-calledmomentconverterregimewithmeanenergytransferefficiencyhigherthan0.8.Themeanvaluesofdynamicvariablescorrespondingtothisdynamicstateare:M

=

0.0506,M2

=

0.0557,ω1

=

0.673,ω2

=

0.4986,Mz

=

0.0466,z

=

0.0849andaremarkedoutinFig.5(a)aswellonthinverticallinebyboldpoints.Non-dimensionalfrictionlossesatdynamiccalculationwereconsideredaccordingto(16)asfollows:,,whereisdimensionalrelativemomentstandardvalue(13).

Fig.4.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.3.

Fig.5.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.4.

Fig.6.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.6.Fig.7.

Dynamicfactor(transmissibility)ofthecentredperiodiccomponentofthesystemdrivingmomentwiththeconverterM350.222infrettingclutchandmomentconverterregimeforoptionalparameteru

=

0.4

Fig.8.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentofthedrivingangularvelocityofthesystemwiththeconverterM350.222infrettingclutchandmomentconverterregimeforoptionalparameteru

=

0.4

Fig.9.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentofthepumpmomentoftheconverterM350.222infrettingclutchandmomentconverterregimeforparameteru

=

0.4.

Fig.10.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentoftheturbinemomentoftheconverterM350.222infrettingclutchandmomentconverterregimeforparameteru

=

0.4.

Fig.11.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentoftheturbineangularvelocityofthesystemconverterM350.222atfrettingclutchandmomentconverterregimeforparameteru

=

0.4.4.ResultsevaluationandconcludingremarksInthepapersomedynamicpropertiesofaDieseldrivelinewithsomethelatestgenerationtorqueconvertertypeswereinquiredandstationaryresponsetocommonmonoharmonicloadingwascalculated.Meanvaluesofalldynamicvariableswerecalculatedforthesystemwiththesamecontrolleddriveandsuccessivelyfourchosentorqueconvertertypes.Inordertosavespace,completedynamiccalculationsareperformedonlyforthesystemwithconverterM350.222andresultsareintroducedinformoffrequencyresponsefunctionsandNyquistdiagrams.AlreadyfromthecalculatedmeanvaluesinFig.4,F(xiàn)ig.5andFig.6onemayjudgetechnicalpossibilitiesandcollaborationaptnessoftheapplieddrivewiththeconsideredconvertertype.EvenfromthesediagramsitisevidentthatatapplicationM350.222thisconvertercanworkinarbitraryhydrodynamicregimewhenoptionalparametervalueu

0.6.Workingregimeofthesystemadjustsautomaticallyanddependsonlyonexternalloadingandparametervaluesu.Atmaximalloadingandlowervaluesualltheconsideredhydrodynamicconverterworkinhydrodynamicfrictionclutchregimewhenturbinerotationmayevenextremelydecreasetozerovalue.Atmeanloadingtheconverterworksinthesystemashydrodynamicmomentconverterwithaverageenergytransferefficiencyabove0.8.Atlowsystemloadingandhighervaluesu,theconverterbehavesasquasi-hydrodynamicfixclutchwhenrelativeworkingmediumvelocityislowandcreatesimpressionofstiffenedsubstance.Inthisworkingregimeangularvelocitiesofalltheconverterrotatingcomponentsareclosetoeachotherandmeanenergytransferefficiencyapproachestheoreticallyto1.FromcalculatedmeanvaluesinFig.5andFig.6itisevidentthatthetorqueconverters:M350.623M,M350.675,M350.72M3Mcanatoptionalparameteru

0.4cooperatewithgivendriveonlyinmomentconverterandhydrodynamicfixclutchregimerespectively.ThedynamicalresponsesofthedrivelinewiththetorqueconverterM350.222aredepictedinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11.InFig.7andFig.8dynamicfactors(transmissibility)ofmomentandangularvelocityofthedriveareintroduced.Itisevidentthatatchosenvalueofdampingratioζ

=

0.55onlyonesignificantresonanceofthesevariablesoccurswhichliesalwaysinloadingfrequencyinterval(),regardlessofthefactinwhatregimetheappliedconverterworks.Resonancevaluesofmomentandangularvelocityofthedrivearesignificantlyinfluencedbytotalinertiamomentoftheloadingmechanism.ThehigherIzvalueis,thelowerresonantvaluesare.VerysimplyonecaninquireinfluenceofthesupplementarygearingratioimbecausereducedinertiamomentIzchangeswithitssecondpower.Itisinterestingthatchangeoftheloadingmechanisminertiamomentdoesnotshiftresonantpeakofdynamiccharacteristicsthatremainpracticallyatthesameloadingangularfrequencyν.RemarkableresultsmaybeobservedinFig.9(a)and(b)wherethedynamicfactorsofthepumploadingmomentcorrespondingtoresonantvaluesofmomentandangularvelocityofthedriveareminimalandexpresssmallsensibilitytoIzmagnitudeinbothinquiredconverterregimes.InFig.10andFig.11,thedynamicfactorsofdrivingmomentandangularvelocityoftheturbinearedrawnforthecasewhentheappliedconverterworksinfrictionclutchandmomentconverterregime.Wholerangeofdynamiccalculationshasbeenmadefordifferentvaluesofthetimeconstantandregulatordampingratioζ.ItturnedoutthatthedrivelinewithalltheappliedconvertertypeshassmallsensibilitytotimeconstantmagnitudeoftheWattregulator.Timeconstantchangesinrange(0.01–0.1s)didnotvisiblyrevealincalculateddynamicfactorswhatiscertaindifferenceincomparisonwithhydrostatictransmissionmechanisms(seee.g.[9]).Ontheotherpart,dynamiccalculationsprovethatdampingratioζinfluencesnoticeablyresonantvaluesofalldynamicvariables.TheresonanttransmissibilitypeaksofthedrivingmomentMrandangularvelocityωrindependenceondampingratioζ,forthesystemwithconverterM350.222andforfourdifferentloadinginertiamomentvaluesareintroducedinFig.12(a)and(b).Thethindashlinesalwaysdenotestationaryresonantdynamicfactorvaluesofappertainingvariablecorrespondingtozero-valueloadingfrequency.Equally,asinpreviouscases,leftpartsoftheFig.12(a)representresonantvaluesofmomentandangulardrivingvelocitywhentheappliedconverterworksinhydrodynamicfrictionclutchregime.AnalogicallytherightpartsoftheFig.12(b)representresonantvaluesofthesamevariablewhentheconverterworksinhydrodynamicmomentconverterregime.Fromtheintroduceddiagramsitisevidentthatdisturbancetransmissibilityfromtheloadingmechanismtothedrivegrowswithincreasingdampingratioζ.Ontheotherpart,dynamiccalculationsshowedthatforlowdampingratiovalues(ζ

0.1)indicationofasecondaryresonanceofchosenvariablesappearsinloadingfrequencybandbutthevaluesofthissecondaryresonanceareessentiallylowerthancorrespondingstationaryvalues.

Fig.12.

Transmissibilityresonantvaluesdependencesofmomentanddrivingangularvelocityondampingratioandonreducedinertiamomentoftheloadingforthesystemwiththeathydrodynamicclutchandmomentconverterregimeatu

=

0.4.配合新一代液力變矩器柴油動力線某些特性摘要:帶有控制柴油機車動態(tài)特性,液力傳導機制,尚有傳動裝置和進行普通裝卸工作裝載機調(diào)查。動態(tài)問題解決辦法是建立在現(xiàn)實實驗數(shù)據(jù)基本上:重要動力某些驅(qū)動扭矩速度特性和外部靜態(tài)特性。非線性任務由一種在作者此前出版書籍中簡介修整平衡辦法解決核心字:機動力線;柴油動力控制;液力變矩器;工作機;負載周期;動靜特性名稱和縮寫a,b-----庫侖粘度和非虧損面摩擦Ai,Bi----扭矩速度特性數(shù)學表達系數(shù)i,im----動態(tài)傳播,補充連接傳播比例I,Iz---減少裝卸及駕駛時刻慣性某些kλ,kK----λ(i)和K(i)曲線分別正切斜坡K---------力矩傳送M---------柴油機力矩MD(ω,

z)-可控扭矩-速度驅(qū)動特性MDmax(ω),MDmin(ω)----最大最小扭矩速度特性燃料供應M1,(),M2,()---泵輪負載力矩和渦輪驅(qū)動力矩MT1,MT2----在驅(qū)動和傳導過程中摩擦損失力矩Mz,Mza---傳導扭矩平均值和射程---------液力轉(zhuǎn)換特性半徑t---------時間T,TD-----瓦特調(diào)節(jié)器和柴油動力機時間u,z------油號和調(diào)節(jié)位移w---------共同力學變量ε--------構(gòu)造參數(shù)調(diào)節(jié)ζ--------阻尼調(diào)節(jié)比例λ--------旋轉(zhuǎn)扭矩系數(shù)ν--------傳播角速度,π-----指數(shù)平均值和定期組分----------液體媒介物密度----------旋轉(zhuǎn)角度ω1,(),ω2---泵輪和渦輪角速度DM--------柴油動力機G,GD-------------補充和瓦特調(diào)節(jié)傳動HdPT------液力傳播IJ--------噴油器LM------執(zhí)行機構(gòu)P,R,T-泵輪導輪渦輪名稱1.簡介2.系統(tǒng)數(shù)學模型3.在傳動中固有動態(tài)解決辦法4.成果評價和結(jié)論評價1.簡介由控制柴油機(DM)、液力輸送系統(tǒng)(HDPT),補充傳動(1)、執(zhí)行系統(tǒng)或工作機構(gòu)成活躍動力特性線(啟動器)調(diào)節(jié).工作機引導積極力和帶有限定扭矩傳動。簡樸抱負狀態(tài)下完整體系布局如圖.1.,一種抱負柴油發(fā)動機是原則產(chǎn)品:Zetor8002.1由機械控制或電子噴射燃油管調(diào)節(jié).在液力傳播某些有由WUSAM創(chuàng)造和測試液力變矩系統(tǒng)。這種轉(zhuǎn)換是由三某些構(gòu)成:泵輪,渦輪和導輪。這種轉(zhuǎn)換器長處是它們外部構(gòu)成和它們自身構(gòu)成是完全相似,并且它們也許被互相變化和任意混合,以達到所要目。它們不同僅僅是內(nèi)部構(gòu)造和葉片幾何形狀。依照圖一,到當前為止,超過七十種樣式在被測試,并且在它們當中有些種可以完畢目的樣式已經(jīng)被選出。機械系統(tǒng)將能量從源積極力傳給工作機械。由于每天一種真正驅(qū)動帶有限能量,任何定期裝載總是帶有一定震動雖然是咱們支持所有連接槽,緊密傳動裝置和補償裝置。夜里傳動在重要動力上影響也許僅僅被一種適當扭矩轉(zhuǎn)換操控。

圖1柴油動力線布局圖2系統(tǒng)數(shù)學模型一方面,必要要注重有疑問驅(qū)動線模型是基本,用咱們辦法,運用已經(jīng)出版現(xiàn)象數(shù)據(jù)材料,積極力固有扭矩-速度特性及外部合用液力變矩器穩(wěn)定特性就可以得到,相比于建立在柴油機混合燃料理論等式基本上模型和建立在變矩器復雜內(nèi)腔實際工作介質(zhì)互相作用液力等式基本上模型,這是一種更加簡樸過程。這些特性普通由單獨系統(tǒng)制造廠家提供,由此可知,這是一種不同于以往并且更加簡樸問題解決辦法相比于可以找到,例如:等式[2]、[3]、[4]、[5]以及某些其她。那些有尺寸和無尺寸機械系統(tǒng)數(shù)學模型由圖[6]表達。那些無尺寸缺省被稱作單獨傳動模型(在積極力某些和傳動某些),被提成了如下微分和積分等式聯(lián)合系統(tǒng)形式:(1)(2)(3)(4)\o"ClicktoviewtheMathMLsource"M2=KM1,(5)\o"ClicktoviewtheMathMLsource"λ=λ(i),(6)\o"ClicktoviewtheMathMLsource"K=K(i),(7)(8)(9)這里單獨符號意思是用術(shù)語解釋,在無尺寸模型中,所有動態(tài)變量和參數(shù)是用對的原則量來表達。,這樣可以使整個系統(tǒng)模型變得更加簡樸。從原始等系統(tǒng)向無尺寸形式轉(zhuǎn)化如圖(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)被詳細表達在[6]中.由于引用了論文緣故,因此有必要去表達出驅(qū)動角頻率相相應原則值,這是依照公式擬定,在這里,分母是時間相相應原則,由于這個原則值緣故,調(diào)節(jié)器時間常數(shù)也就被選

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論