吉林大學(xué)機(jī)械學(xué)院本科畢業(yè)設(shè)計(jì)外文翻譯格式樣本_第1頁(yè)
吉林大學(xué)機(jī)械學(xué)院本科畢業(yè)設(shè)計(jì)外文翻譯格式樣本_第2頁(yè)
吉林大學(xué)機(jī)械學(xué)院本科畢業(yè)設(shè)計(jì)外文翻譯格式樣本_第3頁(yè)
吉林大學(xué)機(jī)械學(xué)院本科畢業(yè)設(shè)計(jì)外文翻譯格式樣本_第4頁(yè)
吉林大學(xué)機(jī)械學(xué)院本科畢業(yè)設(shè)計(jì)外文翻譯格式樣本_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

本科生畢業(yè)設(shè)計(jì)(論文)翻譯資料中文題目:配合新一代液力變矩器柴油動(dòng)力線某些特性英文題目:somepropertiesofadieseldrivelinewithhydrodynamictorqueconvertersofthelastestgeneration學(xué)生姓名:學(xué)號(hào):班級(jí):專業(yè):機(jī)械工程及自動(dòng)化指引教師:Somepropertiesofadieseldrivelinewithhydrodynamictorqueconvertersofthelatestgeneration

AbstractDynamicpropertiesofadrivelinewithacontrolledDieselengine,hydrodynamictransmissionmechanism,additionalgearingandaloading-workingmachineproducingcommonmonoharmonicloadingareinvestigated.Solutionofthedynamicproblemisbasedonphenomenologicalexperimentaldata:drivingtorque-speedcharacteristicinthepartoftheprimemoverandso-calledexternalstaticcharacteristicinthehydrotransmissionpart.Thenon-lineartaskissolvedbyamodifiedharmonicbalancemethodthatwasdescribedinprecedingpublicationsbytheauthor.Keywords:Machinedriveline;ControlledDieseldrive;Hydrodynamictorqueconverter;Workingmachine;Periodicloading;StationarydynamicstateNomenclatureandabbreviationsa,b---------Coulombandviscousnon-dimensionalfrictionlossesAi,Bi-------coefficientsinmathematicalexpressionoftorque-speedcharacteristici,im----------kinematictransmission,supplementarygearingtransmissionratioI,Iz-------meanreducedmomentofinertiaindrivingandloadingpartkλ,kK---------tangentslopesofλ(i)andK(i)curvesrespectivelyK-------------momenttransmissionM------------Diesel-enginemomentMD(ω,

z)----controlledtorque-speeddrivingcharacteristicMDmax(ω),MDmin(ω)---torque-speedcharacteristicformaximalandminimalfuelsupplyM1,(),M2,()---pumploadingmomentandturbinedrivingmomentMT1,MT2----frictionlossmomentindrivingandloadingpartMz,Mza----meanvalueandamplitudeofloadingmoment-------------hydrodynamicconvertercharacteristicradiust-------------timeT,TD------------WattregulatorandDiesel-enginetimeconstantu,z---------gasleverandregulatordisplacementw-----------commondynamicvariableε-----------regulatorstructuralparameterζ-----------regulatordampingratioλ-----------coefficientofrotationmomentν-----------loadingangularvelocity,π-------indexdenotingmeanvalueandperiodicalcomponent---------hydraulicmediumdensity----------rotationangleω1,(),ω2---pumpandturbineangularvelocityDM------Diesel-engineG,GD---additionalandWatt-regulatorgearingHdPT---hydrodynamicpowertransmissionIJ--------InjectorLM------loadingmechanism(workingmachine)P,R,T---pump,reactor,turbineArticleOutlineNomenclature1.Introduction2.Mathematicalmodelofthesystem3.Stationarydynamicsolutionatmonoharmonicloading4.Resultsevaluationandconcludingremarks1.IntroductionDynamicpropertiesofadriveline(actuatingunit)consistingofacontrolledDieselengine(DM),hydrodynamicpowertransmissionsystem(HdPT),additionalgearing(G)andaloadingmechanism(LM)orworkingmachineareinvestigated.Theworkingmachineloadstheprimemoverandthetransmissionswithaprescribedmoment.AsimpleidealisedschematiclayoutofthecompletesystemisgiveninFig.1.TheconsideredDieselengineisastandardproduction:ZETOR8002.1controlledbyamechanical(Watt’s)orelectronicregulatorRDgoverningfuelinjectorIJ.IntheplaceofthehydrodynamicpowertransmissiontherearegraduallyappliedhydrodynamictorqueconvertersofthelatestgenerationthathavebeenprojectedandtestedinWUSAM(ResearchandProjectingInstituteofMachinesandMechanisms),j.s.c.Zvolen,Slovakia.Theseconvertersrepresentathreecomponentassemblycomposedofarotationalpump(P),turbine(T)andareactor(R)thatmayrevolveinonedirectionasafreewheel.Advantageoftheseconvertersisthefactthattheirexternaldimensionsandthedimensionsoftheirindividualcomponentsareidenticalandtheymaybemutuallychangedandarbitrarilycombinedinordertoreachdemandedproperties.Theydifferonlybyinternalconfigurationandbladegeometry.Accordingto[1]uptonowmorethan70varioustypeshavebeenexperimentallytestedandfromthemtheoneshavebeenchosenthatoptimallyfulfilledrequiredproperties.Themechanicalsystemunderconsiderationrepresentsasophisticatedenergytransferchainfromasource––primemovertoworkingmechanism.Becauseeveryrealdriveisoffinitepower,anyperiodicloadingalwaysevokesvibrationsofallthedynamicvariableseventhoughwesupposealltheconnectingshaftsandgearingsrigidandbacklashfree.Theinfluenceofdynamicloadingontheprimemovermaybejustcontrolledbyasuitablechoiceofthetorqueconverter.

Fig.1.

SchematiclayoutoftheDieseldriveline.Inthepaperinfluenceofconstantandperiodicloadingontimecourseofallthedynamicvariablesofthesystem(andparticularlyonthevariablesoftheprimemover)isinvestigatedatapplicationofsomeselectedtypesofhydrodynamictorqueconvertersofthelatestgeneration.Forfulfillingthistaskitisnecessarytocreateasuitablemathematicalmodelofthewholecombinedsystemandthenfinditsstationarysolutioncorrespondingtoarequiredloading.2.MathematicalmodelofthesystemAtthebeginningitisnecessarytoemphasizethatmathematicalmodellingofthedrivelineinquestionisbased,inourapproach,onknowledgeofthepublishedphenomenologicaldata:stationarytorque-speedcharacteristicoftheprimemoverandso-calledexternalstaticcharacteristicoftheappliedhydrodynamictorqueconverter.ItisamuchsimplerprocessthanmodellingbasedonthermodynamicequationsofburningfuelmixtureintheDieselengineandonhydrodynamicequationsofrealstreamingworkingmediuminverycomplicatedcavitiesofthetorqueconverter.Thecharacteristicsareusuallygivenbymanufactureroftheindividualsystemcomponents.Thisisdifferentandsimplerapproachtosolutionoftheproblemthanonemayfinde.g.atIshihara[2],HrovatandTobler[3],KesyandKesy[4],Laptev[5]andsomeothers.Thederiveddimensionalandnon-dimensionalmathematicalmodelsofthemechanicalsystemareintroducedin[6].Thenon-dimensional,reduced,so-calledsingle-shaftmodel(inthedrivingandloadingpart),wasderivedintheformofcombinedsystemofthefollowingdifferentialandalgebraicequations:(1)(2)(3)(4)\o"ClicktoviewtheMathMLsource"M2=KM1,(5)\o"ClicktoviewtheMathMLsource"λ=λ(i),(6)\o"ClicktoviewtheMathMLsource"K=K(i),(7)(8)(9)wherethemeaningoftheindividualsymbolsisexplainedinnomenclature.Inthenon-dimensionalmodelallthedynamicvariablesandparametersareexpressedbymeansofproperlychosenrelativestandardquantitiessothatthemodelofthesystemmightbethemostsimple.Transformationoftheoriginalequationssystemtothenon-dimensionalformFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)isdescribedindetailin[6].Asforthiscitedpaper,itisnecessarytosaythattherelativestandardvalueofloadingangularfrequencyhasbeensettledaccordingtotherelation,whereindenominatorisrelativestandardvalueoftime.Forthisvalue,thetimeconstantoftheregulatorhasbeenjustchosen,i.e.,wheretherelateddimensionaldynamicvariablesaredistinguishedbyupperbars.Theintroducedmathematicalmodelhasninevariables:M,M1,ω1,z,λ,K,i,M2,ω2andtheirmeaningisexplainedinnomenclature.ThefirstthreeequationsrepresentmathematicmodeloftheprimemoverwhereininertiamomentIthereisincludedinertiamomentofthepumpandequivalentpartoftheworkingmediumbecausedrivingandpumpshaftsareconnectedbyarigidclutch.TherightsideofEq.(3)representsthecontrolledstationarytorque-speedcharacteristicforwhichitholds:\o"ClicktoviewtheMathMLsource"MD(ω1,z)=MDmax(ω1)-[MDmax(ω1)-MDmin(ω1)]z,(10)whereMDmax(ω1),MDmin(ω1)representitsnon-dimensionalextremebranchesformaximalandminimalfuelsupplyandzisthenon-dimensionalregulatordeviation.IftheexperimentallymeasureddependencesMDmax(ω1),MDmin(ω1)areexpressedbyseconddegreepolynomialsthenthecontrollednon-dimensionaltorque-speedcharacteristichastheform:(11)Fromtheintroducedmodelitisevidentthatatchosenparametervalueudrivingspeedgrowthcausesregulatordisplacementtoincreaseandfuelsupplytodecrease.Theidealisedcontrolledtorque-speedcharacteristicforachosenparametervalueu(gasleverdisplacement)isschematicallydepictedinFig.2.FromEq.(2)itisevidentthatthestructuralparameterεmustbechoseninsuchawaythatregulatorself-oscillationsshouldnotoccur.Eqs.Figs.(4),(5),(6),(7)and(8),inthesenseofconsiderationsin[6],representthedynamicequationsofthetorqueconverter.Eq.(9)representssimplifiedmotionequationoftheloadingmechanismunderassumptionthatthereducedinertiamomentIzdoesnotdependonrotationangle.Inthisreducedinertiamomentthereisinvolvedinertiamomentoftheturbinewithequivalentpartoftheworkingmediumtoo.Itisobviousthatinthisinertiamomentandinallmomentsoftheloadingmechanismthereisconsideredgearratioimofthesupplementarygearingoftheoriginallynon-reducedsystem.Eqs.Figs.(6)and(7)representtheexternalstaticcharacteristicofthehydrodynamictransmission,i.e.formaldependencesofλandKonthekinematicratioiandthedependencesaregivenforeveryconvertertypeingraphicalform.ThedynamicvariablesλandKaredefinedinnon-dimensionalformverysimplybynon-linearrelationsFigs.(4)and(5).Inageneralwaythesenon-dimensionalvariablesaredefinedbymeansofdimensionalvalues(distinguishedbyupperbars)asfollows:(12)whereindividualsymbolmeaningmaybefoundinnomenclature.Aswehavechosen(accordingtoFig.2)fortherelativestandardvalueofangularvelocitytheidlemotionangularvelocityoftheDieselengineatmaximalfuelsupply,i.e.atz

=

0,thenfromFigs.(4)and(12)itisevidentthattherelativestandardmomentvalueis(13)Itmeansthatiffortheapplieddrives?1andalltheappliedconvertertypeshaveequalcharacteristicradiusmandifweconsidermeanvaluekg

m?3atstationarythermicregimethentherelativestandardvalueofthemomentisN

mforalltheconsideredconvertertypes.Theexternalstaticcharacteristicsoftheappliedconverterswithinternallabelling:M350.222,M350.623M,M350.675,M350.72M3M,are(accordingtothemeasuringrecords[7])successivelyintroducedinFig.3(a)–(d).Whenthetorque-speedcharacteristicisknownandthemeasureddependencesFigs.(6)and(7)areatdisposal,itispossibletosolvethecombinedsystemofdifferentialandalgebraicequationsFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9).Thisisalittlecomplicatedtaskbecausethedifferentialandalgebraicequationsintheacceptedmathematicalmodelarenon-linear.Stationarydynamicstateofthesystemwascalculatedbyamodifiedharmonicbalancemethodthatisfullydescribedin[8].

Fig.2.

Idealiseddiagramofthedrivingtorque-speedcharacteristic.

Fig.3.

Externalstaticcharacteristicsofthehydrodynamicpowertransmissions:M350.222,M350.623M,M350.675,M350.72M33.StationarydynamicsolutionatmonoharmonicloadingInthissectionstationarysolutionofthesystemFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)willbelookedforalwayswiththesameprimemoverandsuccessivelyconsideringalltheconverterstypeswhoseexternalstaticcharacteristicsareintroducedinFig.3(a)–(d).Ifeachoftheninedynamicvariablesisdenotedbyacommonsymbolw

M,M1,ω1,z,λ,K,i,M2,ω2then,inaccordancewithappliedmethod,everydynamicvariablemaybeformallyexpressedasasumofitsmeananditscentredperiodiccomponent,i.e.:\o"ClicktoviewtheMathMLsource"w=w+wπ.(14)Followingthementionedmethod,onrestrictivepresumptionthatitholds:\o"ClicktoviewtheMathMLsource"MzaMz→wπw,(15)thesystemFigs.(1),(2),(3),(4),(5),(6),(7),(8)and(9)splitsintotwoindependentsystemsofequations:asystemofnon-linearalgebraicequationsforcalculationwandacombinedsystemoflineariseddifferentialandalgebraicequationsforcalculationwπ.Ifoneconsidersthatfrictionlossesinthedrivingpartareimplicitlyexpressedalreadyinthetorque-speedcharacteristicofthedriveandintheexternalstaticcharacteristicoftheappliedhydrodynamictorqueconverterandfrictionlossesintheloadingpartaresupposedasacombinationofCoulombandviscousfriction,i.e.:\o"ClicktoviewtheMathMLsource"MT2=a+bω2,(16)thenthenon-linearalgebraicsystemhastheform:(17)Thecombinedsystemofthelineariseddifferentialandalgebraicequationsis(18)whereforwritingabbreviationitisdenoted:(19)ThesolutionprocessofbothequationsystemsFigs.(17)and(18)isintroducedin[8].Thesystemofnon-linearequations(17)wascalculatedforthreeparameterlevelsu(u

=

0.3,

0.4,

0.6)thatrespondto30%,40%,and60%ofthemaximalgasleverdisplacement.Toeachchosenparametervalueu,acertaindrivingangularvelocityintervalresponds.FromFig.2andfromEq.(2)itisevidentthatforachosenvalueuthecorrespondingmeandrivingangularvelocityvaluemustlieininterval:\o"ClicktoviewtheMathMLsource"ω1aω1ω1b,(20)whereforbordervaluesoftheintervalitholds:(21)Forthechosenparametervalueu

=

0.3andfordifferentmeanvaluesMz,thecalculatedmeanvaluesw(forthedrivelinewithgivendriveandalltheconsideredconvertertypes)areintroducedindiagramsinFig.4(a)–(d).Analogicalmeanvalueswofthesamevariablescorrespondingwiththeparameteru

=

0.4areinFig.5(a)–(d).Finally,thecalculatedmeanvalueswcorrespondingwithparameteru

=

0.6andidenticaltorqueconvertertypesaredepictedinFig.6(a)–(d).Hereitisimportanttoremindthatx-coordinatesinFig.4,F(xiàn)ig.5andFig.6representthemeanangularvelocityinterval(20)graduallyforparametersu

=

0.3,

0.4,

0.6andthedecimalfractionsonthissectiondenoteonlyitsdecimaldivision.FromthecalculatedmeanvalueswinFig.4,F(xiàn)ig.5andFig.6andfromtheintroducedexternalstaticcharacteristicsinFig.3acompletenineofthemeanvalueswcanbedeterminedforanymeanloadingvalueMzandestimatedlossmomentvalueMT2intheloadingpart.Whenthiscompleteninewisknownthenitispossible,inthesenseoftheappliedmethod,toconstructalltheconstantcoefficientsofthecombineddifferentialandalgebraicsystem(18)forcalculationwπ.Thissystemisalreadylinearandmaybesolvedbyknownclassicalmethods.Firstofall,wetakeinterestinstationarydynamicsolution.Insenseoftheprocedureonemayexpressthecentredperiodiccomponentofeverydynamicvariableintheform:\o"ClicktoviewtheMathMLsource"wπ=Mza(Wccosνt+Wssinνt),(22)wherenotationsWc,Wsrepresentcosineandsinecomponentsofthedynamicfactor(transmissibility)ofcorrespondingdynamicvariable.Detailedcomputingprocedureisintroducedin[8].Fortransmissibilityofthecentredperiodiccomponentofeverydynamicvariableitholds:(23)AsanexampleinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11therearesuccessivelyintroduceddynamiccharacteristicsofthecentredperiodiccomponentsofdynamicvariables:moment(M)andangularvelocityofthedrive(ω1),loadingmomentofthepump(M1),moment(M2)andangularvelocityoftheturbine(ω2)forthesystemwithhydrodynamicconverterM350.222andforchosenparametervalueu

=

0.4.Resultsaregivenintwoformsofdynamiccharacteristics,namelyasclassicfrequencyresponsefunctions(upperparts)andasNyquistdiagrams(lowerparts).Bothtypesofdynamiccharacteristicsarecalculatedforfourvaluesoftheloadingmechanisminertiamoment:kg

m2andforsupplementarygearratioim

=

1.EqualsectionsofloadingangularvelocityΔνwithvalueπcorrespondingtoequalsectionsonfrequencyresponsefunctionx-coordinatesareintheNyquistdiagramsseparatedbyboldpointsaswell.Indynamiccalculations,theDiesel-enginetimeconstants,regulatortimeconstantsandtheregulatordampingratioζ

=

0.55wereconsidered.TheleftpartsofthedynamiccharacteristicsinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11correspondtothedynamicregimewithmeanvalues:λ

=

0.111,K

=

3.12,

i

=

0.127,whicharequantifiedbyboldpointsontheleftthinverticalintheexternalstaticcharacteristicinFig.3(a),whentheconverterworksinso-calledfrictionclutchregime.Meanvaluesofdynamicvariables,correspondingtothisdynamicregime,are:M

=

0.0506,M2

=

0.158,ω1

=

0.673,ω2

=

0.0855,Mz

=

0.152,z

=

0.0849.ThesevaluesarealsoaccentuatedinFig.5(a)byboldpointsonthinverticalline.Inthisdynamicregimetheconverterworkswithmeantransferenergyefficiencyη

0.405.TherightpartsofthedynamiccharacteristicsintroducedinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11correspondtodynamicregimewithmeanvalues:λ

=

0.111,

K

=

1.1,i

=

0.74,representedbyboldpointsontherightthinverticalontheexternalstaticcharacteristicinFig.3(a)whentheconverterworksinso-calledmomentconverterregimewithmeanenergytransferefficiencyhigherthan0.8.Themeanvaluesofdynamicvariablescorrespondingtothisdynamicstateare:M

=

0.0506,M2

=

0.0557,ω1

=

0.673,ω2

=

0.4986,Mz

=

0.0466,z

=

0.0849andaremarkedoutinFig.5(a)aswellonthinverticallinebyboldpoints.Non-dimensionalfrictionlossesatdynamiccalculationwereconsideredaccordingto(16)asfollows:,,whereisdimensionalrelativemomentstandardvalue(13).

Fig.4.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.3.

Fig.5.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.4.

Fig.6.

Meanvaluesofthechosendynamicvariableswofthesystemwithconverters:M350.222,M350.623M,M350.675,M350.72M3Mforoptionalparameteru

=

0.6.Fig.7.

Dynamicfactor(transmissibility)ofthecentredperiodiccomponentofthesystemdrivingmomentwiththeconverterM350.222infrettingclutchandmomentconverterregimeforoptionalparameteru

=

0.4

Fig.8.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentofthedrivingangularvelocityofthesystemwiththeconverterM350.222infrettingclutchandmomentconverterregimeforoptionalparameteru

=

0.4

Fig.9.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentofthepumpmomentoftheconverterM350.222infrettingclutchandmomentconverterregimeforparameteru

=

0.4.

Fig.10.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentoftheturbinemomentoftheconverterM350.222infrettingclutchandmomentconverterregimeforparameteru

=

0.4.

Fig.11.

Dynamicfactor(transmissibility)ofcentredperiodiccomponentoftheturbineangularvelocityofthesystemconverterM350.222atfrettingclutchandmomentconverterregimeforparameteru

=

0.4.4.ResultsevaluationandconcludingremarksInthepapersomedynamicpropertiesofaDieseldrivelinewithsomethelatestgenerationtorqueconvertertypeswereinquiredandstationaryresponsetocommonmonoharmonicloadingwascalculated.Meanvaluesofalldynamicvariableswerecalculatedforthesystemwiththesamecontrolleddriveandsuccessivelyfourchosentorqueconvertertypes.Inordertosavespace,completedynamiccalculationsareperformedonlyforthesystemwithconverterM350.222andresultsareintroducedinformoffrequencyresponsefunctionsandNyquistdiagrams.AlreadyfromthecalculatedmeanvaluesinFig.4,F(xiàn)ig.5andFig.6onemayjudgetechnicalpossibilitiesandcollaborationaptnessoftheapplieddrivewiththeconsideredconvertertype.EvenfromthesediagramsitisevidentthatatapplicationM350.222thisconvertercanworkinarbitraryhydrodynamicregimewhenoptionalparametervalueu

0.6.Workingregimeofthesystemadjustsautomaticallyanddependsonlyonexternalloadingandparametervaluesu.Atmaximalloadingandlowervaluesualltheconsideredhydrodynamicconverterworkinhydrodynamicfrictionclutchregimewhenturbinerotationmayevenextremelydecreasetozerovalue.Atmeanloadingtheconverterworksinthesystemashydrodynamicmomentconverterwithaverageenergytransferefficiencyabove0.8.Atlowsystemloadingandhighervaluesu,theconverterbehavesasquasi-hydrodynamicfixclutchwhenrelativeworkingmediumvelocityislowandcreatesimpressionofstiffenedsubstance.Inthisworkingregimeangularvelocitiesofalltheconverterrotatingcomponentsareclosetoeachotherandmeanenergytransferefficiencyapproachestheoreticallyto1.FromcalculatedmeanvaluesinFig.5andFig.6itisevidentthatthetorqueconverters:M350.623M,M350.675,M350.72M3Mcanatoptionalparameteru

0.4cooperatewithgivendriveonlyinmomentconverterandhydrodynamicfixclutchregimerespectively.ThedynamicalresponsesofthedrivelinewiththetorqueconverterM350.222aredepictedinFig.7,F(xiàn)ig.8,F(xiàn)ig.9,F(xiàn)ig.10andFig.11.InFig.7andFig.8dynamicfactors(transmissibility)ofmomentandangularvelocityofthedriveareintroduced.Itisevidentthatatchosenvalueofdampingratioζ

=

0.55onlyonesignificantresonanceofthesevariablesoccurswhichliesalwaysinloadingfrequencyinterval(),regardlessofthefactinwhatregimetheappliedconverterworks.Resonancevaluesofmomentandangularvelocityofthedrivearesignificantlyinfluencedbytotalinertiamomentoftheloadingmechanism.ThehigherIzvalueis,thelowerresonantvaluesare.VerysimplyonecaninquireinfluenceofthesupplementarygearingratioimbecausereducedinertiamomentIzchangeswithitssecondpower.Itisinterestingthatchangeoftheloadingmechanisminertiamomentdoesnotshiftresonantpeakofdynamiccharacteristicsthatremainpracticallyatthesameloadingangularfrequencyν.RemarkableresultsmaybeobservedinFig.9(a)and(b)wherethedynamicfactorsofthepumploadingmomentcorrespondingtoresonantvaluesofmomentandangularvelocityofthedriveareminimalandexpresssmallsensibilitytoIzmagnitudeinbothinquiredconverterregimes.InFig.10andFig.11,thedynamicfactorsofdrivingmomentandangularvelocityoftheturbinearedrawnforthecasewhentheappliedconverterworksinfrictionclutchandmomentconverterregime.Wholerangeofdynamiccalculationshasbeenmadefordifferentvaluesofthetimeconstantandregulatordampingratioζ.ItturnedoutthatthedrivelinewithalltheappliedconvertertypeshassmallsensibilitytotimeconstantmagnitudeoftheWattregulator.Timeconstantchangesinrange(0.01–0.1s)didnotvisiblyrevealincalculateddynamicfactorswhatiscertaindifferenceincomparisonwithhydrostatictransmissionmechanisms(seee.g.[9]).Ontheotherpart,dynamiccalculationsprovethatdampingratioζinfluencesnoticeablyresonantvaluesofalldynamicvariables.TheresonanttransmissibilitypeaksofthedrivingmomentMrandangularvelocityωrindependenceondampingratioζ,forthesystemwithconverterM350.222andforfourdifferentloadinginertiamomentvaluesareintroducedinFig.12(a)and(b).Thethindashlinesalwaysdenotestationaryresonantdynamicfactorvaluesofappertainingvariablecorrespondingtozero-valueloadingfrequency.Equally,asinpreviouscases,leftpartsoftheFig.12(a)representresonantvaluesofmomentandangulardrivingvelocitywhentheappliedconverterworksinhydrodynamicfrictionclutchregime.AnalogicallytherightpartsoftheFig.12(b)representresonantvaluesofthesamevariablewhentheconverterworksinhydrodynamicmomentconverterregime.Fromtheintroduceddiagramsitisevidentthatdisturbancetransmissibilityfromtheloadingmechanismtothedrivegrowswithincreasingdampingratioζ.Ontheotherpart,dynamiccalculationsshowedthatforlowdampingratiovalues(ζ

0.1)indicationofasecondaryresonanceofchosenvariablesappearsinloadingfrequencybandbutthevaluesofthissecondaryresonanceareessentiallylowerthancorrespondingstationaryvalues.

Fig.12.

Transmissibilityresonantvaluesdependencesofmomentanddrivingangularvelocityondampingratioandonreducedinertiamomentoftheloadingforthesystemwiththeathydrodynamicclutchandmomentconverterregimeatu

=

0.4.配合新一代液力變矩器柴油動(dòng)力線某些特性摘要:帶有控制柴油機(jī)車動(dòng)態(tài)特性,液力傳導(dǎo)機(jī)制,尚有傳動(dòng)裝置和進(jìn)行普通裝卸工作裝載機(jī)調(diào)查。動(dòng)態(tài)問題解決辦法是建立在現(xiàn)實(shí)實(shí)驗(yàn)數(shù)據(jù)基本上:重要?jiǎng)恿δ承?qū)動(dòng)扭矩速度特性和外部靜態(tài)特性。非線性任務(wù)由一種在作者此前出版書籍中簡(jiǎn)介修整平衡辦法解決核心字:機(jī)動(dòng)力線;柴油動(dòng)力控制;液力變矩器;工作機(jī);負(fù)載周期;動(dòng)靜特性名稱和縮寫a,b-----庫(kù)侖粘度和非虧損面摩擦Ai,Bi----扭矩速度特性數(shù)學(xué)表達(dá)系數(shù)i,im----動(dòng)態(tài)傳播,補(bǔ)充連接傳播比例I,Iz---減少裝卸及駕駛時(shí)刻慣性某些kλ,kK----λ(i)和K(i)曲線分別正切斜坡K---------力矩傳送M---------柴油機(jī)力矩MD(ω,

z)-可控扭矩-速度驅(qū)動(dòng)特性MDmax(ω),MDmin(ω)----最大最小扭矩速度特性燃料供應(yīng)M1,(),M2,()---泵輪負(fù)載力矩和渦輪驅(qū)動(dòng)力矩MT1,MT2----在驅(qū)動(dòng)和傳導(dǎo)過程中摩擦損失力矩Mz,Mza---傳導(dǎo)扭矩平均值和射程---------液力轉(zhuǎn)換特性半徑t---------時(shí)間T,TD-----瓦特調(diào)節(jié)器和柴油動(dòng)力機(jī)時(shí)間u,z------油號(hào)和調(diào)節(jié)位移w---------共同力學(xué)變量ε--------構(gòu)造參數(shù)調(diào)節(jié)ζ--------阻尼調(diào)節(jié)比例λ--------旋轉(zhuǎn)扭矩系數(shù)ν--------傳播角速度,π-----指數(shù)平均值和定期組分----------液體媒介物密度----------旋轉(zhuǎn)角度ω1,(),ω2---泵輪和渦輪角速度DM--------柴油動(dòng)力機(jī)G,GD-------------補(bǔ)充和瓦特調(diào)節(jié)傳動(dòng)HdPT------液力傳播IJ--------噴油器LM------執(zhí)行機(jī)構(gòu)P,R,T-泵輪導(dǎo)輪渦輪名稱1.簡(jiǎn)介2.系統(tǒng)數(shù)學(xué)模型3.在傳動(dòng)中固有動(dòng)態(tài)解決辦法4.成果評(píng)價(jià)和結(jié)論評(píng)價(jià)1.簡(jiǎn)介由控制柴油機(jī)(DM)、液力輸送系統(tǒng)(HDPT),補(bǔ)充傳動(dòng)(1)、執(zhí)行系統(tǒng)或工作機(jī)構(gòu)成活躍動(dòng)力特性線(啟動(dòng)器)調(diào)節(jié).工作機(jī)引導(dǎo)積極力和帶有限定扭矩傳動(dòng)。簡(jiǎn)樸抱負(fù)狀態(tài)下完整體系布局如圖.1.,一種抱負(fù)柴油發(fā)動(dòng)機(jī)是原則產(chǎn)品:Zetor8002.1由機(jī)械控制或電子噴射燃油管調(diào)節(jié).在液力傳播某些有由WUSAM創(chuàng)造和測(cè)試液力變矩系統(tǒng)。這種轉(zhuǎn)換是由三某些構(gòu)成:泵輪,渦輪和導(dǎo)輪。這種轉(zhuǎn)換器長(zhǎng)處是它們外部構(gòu)成和它們自身構(gòu)成是完全相似,并且它們也許被互相變化和任意混合,以達(dá)到所要目。它們不同僅僅是內(nèi)部構(gòu)造和葉片幾何形狀。依照?qǐng)D一,到當(dāng)前為止,超過七十種樣式在被測(cè)試,并且在它們當(dāng)中有些種可以完畢目的樣式已經(jīng)被選出。機(jī)械系統(tǒng)將能量從源積極力傳給工作機(jī)械。由于每天一種真正驅(qū)動(dòng)帶有限能量,任何定期裝載總是帶有一定震動(dòng)雖然是咱們支持所有連接槽,緊密傳動(dòng)裝置和補(bǔ)償裝置。夜里傳動(dòng)在重要?jiǎng)恿ι嫌绊懸苍S僅僅被一種適當(dāng)扭矩轉(zhuǎn)換操控。

圖1柴油動(dòng)力線布局圖2系統(tǒng)數(shù)學(xué)模型一方面,必要要注重有疑問驅(qū)動(dòng)線模型是基本,用咱們辦法,運(yùn)用已經(jīng)出版現(xiàn)象數(shù)據(jù)材料,積極力固有扭矩-速度特性及外部合用液力變矩器穩(wěn)定特性就可以得到,相比于建立在柴油機(jī)混合燃料理論等式基本上模型和建立在變矩器復(fù)雜內(nèi)腔實(shí)際工作介質(zhì)互相作用液力等式基本上模型,這是一種更加簡(jiǎn)樸過程。這些特性普通由單獨(dú)系統(tǒng)制造廠家提供,由此可知,這是一種不同于以往并且更加簡(jiǎn)樸問題解決辦法相比于可以找到,例如:等式[2]、[3]、[4]、[5]以及某些其她。那些有尺寸和無尺寸機(jī)械系統(tǒng)數(shù)學(xué)模型由圖[6]表達(dá)。那些無尺寸缺省被稱作單獨(dú)傳動(dòng)模型(在積極力某些和傳動(dòng)某些),被提成了如下微分和積分等式聯(lián)合系統(tǒng)形式:(1)(2)(3)(4)\o"ClicktoviewtheMathMLsource"M2=KM1,(5)\o"ClicktoviewtheMathMLsource"λ=λ(i),(6)\o"ClicktoviewtheMathMLsource"K=K(i),(7)(8)(9)這里單獨(dú)符號(hào)意思是用術(shù)語(yǔ)解釋,在無尺寸模型中,所有動(dòng)態(tài)變量和參數(shù)是用對(duì)的原則量來表達(dá)。,這樣可以使整個(gè)系統(tǒng)模型變得更加簡(jiǎn)樸。從原始等系統(tǒng)向無尺寸形式轉(zhuǎn)化如圖(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)被詳細(xì)表達(dá)在[6]中.由于引用了論文緣故,因此有必要去表達(dá)出驅(qū)動(dòng)角頻率相相應(yīng)原則值,這是依照公式擬定,在這里,分母是時(shí)間相相應(yīng)原則,由于這個(gè)原則值緣故,調(diào)節(jié)器時(shí)間常數(shù)也就被選

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論