版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆江西省九江同文中學(xué)高二上數(shù)學(xué)期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.2.變量,滿足約束條件則的最小值為()A. B.C. D.53.命題“,”否定是()A., B.,C., D.,4.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.5.拋物線的焦點坐標(biāo)是A. B.C. D.6.若函數(shù)有零點,則實數(shù)的取值范圍是()A. B.C. D.7.若函數(shù),滿足且,則()A.1 B.2C.3 D.48.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”9.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.10.已知雙曲線上點到點的距離為15,則點到點的距離為()A.9 B.6C.6或36 D.9或2111.設(shè)函數(shù),則曲線在點處的切線方程為()A. B.C. D.12.已知直線是圓的對稱軸,過點A作圓C的一條切線,切點為B,則|AB|=()A.1 B.2C.4 D.8二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.14.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______15.一條光線從點射出,經(jīng)x軸反射,其反射光線所在直線與圓相切,則反射光線所在的直線方程為____.16.已知一個樣本數(shù)據(jù)為3,3,5,5,5,7,7,現(xiàn)在新加入一個3,一個5,一個7得到一個新樣本,則與原樣本數(shù)據(jù)相比,新樣本數(shù)據(jù)平均數(shù)______,方差______.(“變大”、“變小”、“不變”)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由18.(12分)已知函數(shù)(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積19.(12分)為弘揚中華優(yōu)秀傳統(tǒng)文化,鼓勵全民閱讀經(jīng)典書籍,某市舉行閱讀月活動,現(xiàn)統(tǒng)計某街道約10000人在該活動月每人每日平均閱讀時間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計這個人的每日平均閱讀時間超過60分鐘的概率.20.(12分)已知函數(shù)(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值21.(12分)已知橢圓的離心率為,短軸端點到焦點的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點,為坐標(biāo)原點,且以為直徑的圓經(jīng)過原點,求證:原點到直線的距離為定值,并求出該定值22.(10分)如圖長方體中,,,點為的中點.(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點睛】本題考查線面角的求解,利用向量法可簡化分析過程,直接用計算的方式解決問題,是基礎(chǔ)題.2、A【解析】根據(jù)不等式組,作出可行域,數(shù)形結(jié)合即可求z的最小值.【詳解】根據(jù)不等式組作出可行域如圖,,則直線過A(-1,0)時,z取最小值.故選:A.3、D【解析】根據(jù)含有量詞的命題的否定即可得出結(jié)論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.4、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B5、D【解析】根據(jù)拋物線的焦點坐標(biāo)為可知,拋物線即的焦點坐標(biāo)為,故選D.考點:拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).6、A【解析】設(shè),則函數(shù)有零點轉(zhuǎn)化為函數(shù)的圖象與直線有交點,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求出【詳解】設(shè),定義域為,則,易知為單調(diào)遞增函數(shù),且所以當(dāng)時,,遞減;當(dāng)時,,遞增,所以所以,即故選:A【點睛】本題主要考查根據(jù)函數(shù)有零點求參數(shù)的取值范圍,意在考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題7、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C8、C【解析】結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.9、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B10、D【解析】利用雙曲線的定義可得答案.【詳解】設(shè),,,為雙曲線的焦點,則由雙曲線定義,知,而所以或21故選:D.11、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A12、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點A坐標(biāo)為,,切點為B則,故選:C【點睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用轉(zhuǎn)化法,根據(jù)線面平行的性質(zhì),結(jié)合三棱錐的體積等積性進行求解即可.【詳解】設(shè)是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設(shè)為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:14、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:215、或【解析】點關(guān)于軸的對稱點為,即反射光線過點,分別討論反射光線的斜率存在與不存在的情況,進而求解即可【詳解】點關(guān)于軸的對稱點為,(1)設(shè)反射光線的斜率為,則反射光線的方程為,即,因為反射光線與圓相切,所以圓心到反射光線的距離,即,解得,所以反射光線方程為:;(2)當(dāng)不存在時,反射光線,此時,也與圓相切,故答案為:或【點睛】本題考查直線在光學(xué)中的應(yīng)用,考查圓的切線方程16、①.不變②.變大【解析】通過計算平均數(shù)和方差來確定正確答案.【詳解】原樣本平均數(shù)為,原樣本方差為,新樣本平均數(shù)為,新樣本方差為.所以平均數(shù)不變,方差變大.故答案為:不變;變大三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)取BC的中點O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標(biāo)系,假設(shè)點M存在,設(shè),求出M點坐標(biāo),然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因為,所以平面,因為平面中,所以平面平面.(2)由(1)問知:兩兩垂直,以O(shè)為坐標(biāo)原點,為軸,為軸,為軸建立空間之間坐標(biāo)系.則,,,,若存在點M,則點M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點M,.【點睛】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點睛:(1)判斷是否存在的問題,一般先假設(shè)存在;(2)設(shè)出點坐標(biāo),作為已知條件,代入計算;(3)根據(jù)結(jié)果,判斷是否存在.18、(1)(2)2【解析】(1)首先求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點斜式求出切線方程;(2)首先求出兩函數(shù)的交點坐標(biāo),再利用定積分及微積分基本定理計算可得;【小問1詳解】解:因為,所以,所以切線的斜率,切線過點,切線的方程為,即【小問2詳解】解:由題知,即解得或,即或或,直線與曲線于則所求圖形的面積19、(1)(2)0.7【解析】(1)利用概率和為1計算可得的值;(2)求頻率分布直方圖中每人每日平均閱讀時間超過60分鐘的概率即為這個人閱讀時間超過60分鐘的概率.【小問1詳解】由得【小問2詳解】,估計這個人的每日平均閱讀時間超過60分鐘的概率為20、(1);(2)最大值與最小值分別為與【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率即可求出結(jié)果;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而結(jié)合函數(shù)的單調(diào)性即可求出最值.【詳解】(1)因為,所以所以所以的圖象在點處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調(diào)遞減,在上單調(diào)遞增.所以又,所以所以在上的最大值與最小值分別為與21、(1)(2)證明見解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡得到,代入計算得到答案.【小問1詳解】橢圓的離心率為,短軸端點到焦點的距離為,故,,故橢圓方程為.【小問2詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過原點,故,即,即,化簡整理得到:,原點到直線的距離為.當(dāng)直線斜率不存在時,為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點的距離為.綜上所述:原點到直線的距離為定值.【點睛】本題考查了橢圓方程,橢圓中的定值問題,意在考查學(xué)生的計算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過原點轉(zhuǎn)化為是解題的關(guān)鍵.22、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度體育產(chǎn)業(yè)人力資源配置中介協(xié)議書
- 2025年度房地產(chǎn)買賣合同主體變更協(xié)議模板
- 2025年度員工與企業(yè)市場拓展對賭合作協(xié)議
- 2025年度單位與個人簽訂的海外留學(xué)資金借款協(xié)議
- 二零二五年度蛋糕店與健身房聯(lián)營協(xié)議
- 2024物聯(lián)網(wǎng)技術(shù)在智能農(nóng)業(yè)中的應(yīng)用合作協(xié)議
- 2025年度員工宿舍消防安全協(xié)議及責(zé)任劃分合同
- 二零二五年度父母離異后子女撫養(yǎng)權(quán)變更調(diào)解合同
- 醫(yī)療設(shè)備使用中的安全工作生產(chǎn)策略研究
- 二零二五年度綠色交通基礎(chǔ)設(shè)施建設(shè)土地使用權(quán)抵押擔(dān)保合同
- ISO27001信息安全管理體系培訓(xùn)資料
- 紅色經(jīng)典影片與近現(xiàn)代中國發(fā)展學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 工藝豎井開挖支護施工技術(shù)方案(清楚明了)
- 初中《合唱》校本課程
- 一元一次含參不等式教學(xué)設(shè)計83
- 100道湊十法練習(xí)習(xí)題(含答案)
- 牛仔面料成本核算
- 簡單娛樂yy頻道設(shè)計模板
- 健康體檢的八大意義
- 銷售顧問初級認(rèn)證筆試題
- 市場化人才選聘管理辦法
評論
0/150
提交評論