版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年河北省石家莊市趙縣九年級(jí)(上)期末數(shù)學(xué)試卷
一、選擇題:本題共16小題,共38分。在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.一元二次方程3/+I=6X的一次項(xiàng)系數(shù)為6,二次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別為()
A.3,1B.-3,-1C.3,-1D.-3/,-1
2.下列函數(shù)中不是二次函數(shù)的有()
X.y-(x-I)2B.y=42x2-1
C.y=3久2+2x—1D.y=(x+l)2—x2
3.在平面直角坐標(biāo)系中,點(diǎn)P(3,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P的坐標(biāo)是()
A.(2,-3)B.(3,-2)C.(-2,3)D.(-3,-2)
4.如圖,△ABC內(nèi)接于。。,CD是。。的直徑,Z.BAC=38°,貝UNBCD的度數(shù)是()
A.38°
B.76°
C.52°
D.60°
5.一個(gè)口袋中有紅球、白球共10個(gè),這些球除顏色外都相同.將口袋中的球攪拌均勻,從中隨機(jī)摸出一個(gè)
球,記下它的顏色后再放回口袋中,不斷重復(fù)這一過(guò)程,共摸了100次球,發(fā)現(xiàn)有40次摸到白球.請(qǐng)你估計(jì)
這個(gè)口袋中有個(gè)紅球.()
A.2B.3C.6D.8
6.反比例函數(shù)為=生,%=勺,乃=勺在同一坐標(biāo)系中的圖象如圖所示,貝也1,
卜2,七的大小關(guān)系為()
A.々3>k]>々2
B.fci>fc3>七
c.k3>k2>q
D.>fci>fc3
7.如圖,ZkAOB和△COD是位似圖形,點(diǎn)。是位似中心,CD=2/8.若點(diǎn)/
的坐標(biāo)為(2,1),則點(diǎn)C的坐標(biāo)為()
A.(—6,—3)
B.(-5,-3)
c.(-4,一2)
D.(—4,—3)
8.如圖,點(diǎn)A,B,C都是正方形網(wǎng)格的格點(diǎn),連接84CA,則4區(qū)4c的正弦值為()B
B.”
5
A
C匹
5
D.2
9.課堂上丁老師帶來(lái)?個(gè)立體圖形的模型,嘉嘉同學(xué)從某?角度看到的形狀為三角形,則這一立體圖形
定不是()
A.圓柱B.圓錐C.棱柱D.棱錐
10.一元二次方程2x(久+1)=3(%+1)的解是()
3
A.%=-1B.x=-
C.乙=-1,%2=|D.無(wú)實(shí)數(shù)解
11.若點(diǎn)4(0,yi),8(1/2),。(一2,%)是拋物線丫=/—2%+1上的三點(diǎn),則()
A.乃>為>yiB.yi>y2>為C.%>乃>九D.乃>%>為
12.如圖,。。過(guò)原點(diǎn)。,且與兩坐標(biāo)軸分別交于點(diǎn)力、B,點(diǎn)4的坐標(biāo)為(0,5),
點(diǎn)M是第三象限內(nèi)徜上一點(diǎn),ABMO=120°,則OC的半徑為()
A.4
B.5
C.6
D.20
13.如圖,AABC和AADE都是等腰直角三角形,N4CB和ND都是直角,點(diǎn)C在4E上,AABC繞著力點(diǎn)經(jīng)過(guò)
逆時(shí)針旋轉(zhuǎn)后能夠與ANDE重合,再將圖(1)作為“基本圖形”繞著4點(diǎn)經(jīng)過(guò)逆時(shí)針旋轉(zhuǎn)得到圖(2).兩次旋
轉(zhuǎn)的角度分別為()
A.45°,90°B.90°,45°C.60°,30°D.30°,60°
14.如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=|(/c>0)的圖象交于點(diǎn)
4(1,2),則關(guān)于x的不等式ax+b>:的解集是()
A.x<—2或0<%<1
B.x<或0<久<2
C.—2<x<?;騲>1
D.-1<%<0或x>2
15.如圖,在正六邊形28CDEF中,M,N是對(duì)角線BE上的兩點(diǎn).添加下列
條件中的一個(gè):①BM=EN;②4FAN=LCDM;③AM=DN;
@^AMB=乙DNE.能使四邊形4MDN是平行四邊形的是()
A.①②④
B.①③④
C-①②③④
D.①④
16.二次函數(shù)y=(a—1)/—(2a-3)x+a-4的圖象與x軸有兩個(gè)公共點(diǎn),a取滿足條件的最小整數(shù),將
圖象在x軸上方的部分沿?zé)o軸翻折,其余部分保持不變,得到一個(gè)新圖象,當(dāng)直線y=履-2與新圖象恰有
三個(gè)公共點(diǎn)時(shí),貝腺的值不可能是()
A.-1B.-2C.1D.2
二、填空題:本題共3小題,共10分。
17.如圖,拋物線丫="2+匕久+3(£1<0)交工軸于點(diǎn)力,5(4,0),交y軸于點(diǎn)C,以
OC為邊的正方形OCDE的頂點(diǎn)D在拋物線上,則點(diǎn)力的坐標(biāo)是.
18.如圖,4是。。外一點(diǎn),AB,AC分別與。。相切于點(diǎn)B,C,P是弧BC上任意一
點(diǎn),過(guò)點(diǎn)P作。。的切線,交2B于點(diǎn)M,交4C于點(diǎn)N.40=8,BO=6,則A4MN
的周長(zhǎng)是,若NR4c=40。,則N8PC=.
19.如圖,在平面直角坐標(biāo)系xOy中,正方形A8CD的頂點(diǎn)4。恰好落在雙
曲線y=早上,且點(diǎn)。在4c上,4。交x軸于點(diǎn)E.
①當(dāng)4點(diǎn)坐標(biāo)為(l,m)時(shí),。點(diǎn)的坐標(biāo)為;
②當(dāng)CE平分N4CD時(shí),正方形4BCD的面積為.
三、計(jì)算題:本大題共1小題,共10分。
20.某鎮(zhèn)為創(chuàng)建特色小鎮(zhèn),助力鄉(xiāng)村振興,決定在轄區(qū)的一條河上修建一座步行觀光橋.如圖,河旁有一
座小山,山高BC=8(hn,點(diǎn)C、2與河岸E、尸在同一水平線上,從山頂B處測(cè)得河岸E和對(duì)岸F的俯角分別
為4DBE=45。,ADBF=31。.若在此處建橋,求河寬EF的長(zhǎng).(結(jié)果精確到1m)
[參考數(shù)據(jù):s譏31。=0.52,cos31°?0.86,tan31°-0.60]
四、解答題:本題共6小題,共62分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。
21.(本小題9分)
已知m是方程2/—7x+1=0的一個(gè)根,求代數(shù)式m(2zn—7)+5的值.
22.(本小題9分)
已知:如圖,2B是O。的直徑,CD是。。的弦,且4B1CD,垂足為E.
(1)求證:4CDB=4A;
(2)若NDBC=120°,。。的直徑4B=8,求BC、CD的長(zhǎng).
A
B
23.(本小題10分)
如圖,口48CD中,點(diǎn)E是4。的中點(diǎn),連接CE并延長(zhǎng)交B4的延長(zhǎng)線于點(diǎn)F.
(1)求證:AF=AB-,
(2)點(diǎn)G是線段AF上一點(diǎn),滿足NFCG=NFCD,CG交AD于點(diǎn)H.
①求證:AH-CH=DH-GH;
②若4G=2,FG=6,求的長(zhǎng).
24.(本小題10分)
某學(xué)校為豐富課后服務(wù)內(nèi)容,計(jì)劃開設(shè)經(jīng)典誦讀,花樣跳繩、電腦編程、國(guó)畫賞析、民族舞蹈五門興趣課
程.為了解學(xué)生對(duì)這五門興趣課程的喜愛(ài)情況,隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(要求每位學(xué)生只能選
擇一門課程),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
學(xué)生對(duì)五門興趣課程喜愛(ài)學(xué)生對(duì)五門興耀課程喜愛(ài)
根據(jù)圖中信息,完成下列問(wèn)題:
(1)本次調(diào)查共抽取了名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)計(jì)算扇形統(tǒng)計(jì)圖中“電腦編程”所對(duì)應(yīng)扇形的圓心角度數(shù);
(4)若全校共有1200名學(xué)生,請(qǐng)估計(jì)選擇“民族舞蹈”課程的學(xué)生人數(shù);
(5)在經(jīng)典誦讀課前展示中,甲同學(xué)從標(biāo)有2《出師表》、B概滄?!?、C您亍路難》的三個(gè)簽中隨機(jī)抽取
一個(gè)后放回,乙同學(xué)再隨機(jī)抽取一個(gè),請(qǐng)用列表或畫樹狀圖的方法,求甲乙兩人至少有一人抽到2(T出師
表》的概率.
25.(本小題12分)
某學(xué)校要修建一個(gè)占地面積為64平方米的矩形體育活動(dòng)場(chǎng)地,四周要建上高為1米的圍擋.學(xué)校準(zhǔn)備了可
以修建45米長(zhǎng)的圍擋材料(可以不用完).設(shè)矩形地面中:AB=x米,BC=y米.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不寫自變量的取值范圍);
(2)能否建造力B=20米的活動(dòng)場(chǎng)地?請(qǐng)說(shuō)明理由;
(3)若矩形地面的造價(jià)為1千元/平方米,側(cè)面圍擋的造價(jià)為0.5千元/平方米,建好矩形場(chǎng)地的總費(fèi)用為80.4
千元,求出”的值.(總費(fèi)用=地面費(fèi)用+圍擋費(fèi)用)
26.(本小題12分)
如圖,拋物線丫=。/+以一8與%軸交于4(2,0),8(4,0),。為拋物線的頂
(1)求拋物線的解析式;
(2)如圖1,若“為射線與y軸的交點(diǎn),N為射線上一點(diǎn),設(shè)N點(diǎn)的橫坐標(biāo)為3△£>//'的面積為S,求S
與t的函數(shù)關(guān)系式;
(3)如圖2,在(2)的條件下,若N與B重合,G為線段0H上一點(diǎn),過(guò)G作y軸的平行線交拋物線于F,連接
AF,若NG=NQ,NG1NQ,B.^AGN=/.FAG,求產(chǎn)點(diǎn)的坐標(biāo).
答案和解析
1.【答案】B
【解析】解:3/+1=6x,
3x2+1—6x=0,
—3x2+6x—1—0,
???一次項(xiàng)系數(shù)是6,
二二次項(xiàng)系數(shù)是-3,常數(shù)項(xiàng)是-1,
故選:B.
根據(jù)一次項(xiàng)系數(shù)是6化成一元二次方程的一般形式,再求出答案即可.
本題考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此題的關(guān)鍵.
2.【答案】D
【解析】解:Ay=。-1)2是二次函數(shù),不符合題意;
By=娥/一1是二次函數(shù),不符合題意;
C.y=3/+2x—l是二次函數(shù),不符合題意;
D.y=(x+—/=2刀+1是一次函數(shù),符合題意;
故選:D.
根據(jù)二次函數(shù)的定義逐一判斷即可.
本題主要考查二次函數(shù)的定義:"形如y=a/+加;+以。40),y=a(x-h.)2+k(a0),y--
h)2(a豐0)的函數(shù)是二次函數(shù).
3.【答案】D
【解析】解:點(diǎn)P(3,2)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P'的坐標(biāo)是(-3,-2).
故選:D.
根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)解答即可.
本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn),熟知兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反是解題的關(guān)
鍵.
4.【答案】C
【解析】解:如圖,連接BD.
B
???CD是直徑,
.-.乙DBC=90°,
???乙BDC=ABAC=38°
ABCD=90°-38°=52°.
故選:C.
連接。8,求出NDBC,NBDC的度數(shù),可得結(jié)論.
本題考查的是圓周角定理,掌握直徑所對(duì)的圓周角是直角、同弧所對(duì)的圓周角相等是解題的關(guān)鍵.
5.【答案】C
【解析】解:根據(jù)題意得:
答:估計(jì)這個(gè)口袋中有6個(gè)紅球.
故選:C.
用球的總個(gè)數(shù)乘以摸到紅球的頻率即可.
本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的
幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這
個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來(lái)越精確.
6.【答案】C
【解析】解:???反比例函數(shù)為=?的圖象在第三象限,
k3>0;
???反比例函數(shù)為=勺,y2=與的圖象在第四象限,
???k2<0,kr<0,
???反比例函數(shù)為的圖象距離坐標(biāo)軸較遠(yuǎn),
k]<Ze?,
/C3>k2>k].
故選:C.
根據(jù)反比例函數(shù)的性質(zhì)進(jìn)行解答即可.
本題考查的是反比例函數(shù)的性質(zhì)與反比例函數(shù)的圖象,熟知反比例函數(shù)的圖象與系數(shù)的關(guān)系是解題的關(guān)
鍵.
7.【答案】C
【解析】解:???△40B和△COD是位似圖形,點(diǎn)。是位似中心,CD=2AB,
二位似比為2,
「點(diǎn)4的坐標(biāo)為(2,1),
.??點(diǎn)C的坐標(biāo)為(一4,一2).
故選:C.
先確定為位似比為2,然后把點(diǎn)的橫縱坐標(biāo)都乘以-2即可.
本題考查了位似變換:在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似
圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k.
8.【答案】B
【解析】解:連接CB,如圖所示:
A
設(shè)小正方形邊長(zhǎng)為1,
AB=V22+42=AC=V32+42=5,CB=V22+I2=V_5>
AC2=AB2+BC2,
.?.△2BC是直角三角形,
在RtzMBC中,sinzBXC=^=^,
故選:B.
連接CB,設(shè)小正方形邊長(zhǎng)為1,求出力B=股小+42=2,^,AC=V32+42=5>CB=V22+I2=
A,即可證明△ABC是直角三角形,問(wèn)題隨之得解.
本題考查網(wǎng)格中求三角函數(shù)值,三角函數(shù)定義,勾股定理及其逆定理,掌握三角函數(shù)值,三角函數(shù)定義是
解題的關(guān)鍵.
9【答案】A
【解析】解:圓柱從上、下面看是圓形,從側(cè)面看是長(zhǎng)方形,故A符合題意,
圓錐從側(cè)面看是三角形,故8不符合題意,
三棱柱從上、下面看是三角形,故c不符合題意,
棱錐從側(cè)面看是三角形,故D不符合題意,
故選:A.
找到無(wú)論從哪個(gè)角度看,都看不出三角形的立體圖形.
本題考查了三視圖,關(guān)鍵是掌握?qǐng)A柱的三視圖.
10.【答案】C
【解析】解:原方程變形,得Q+l)(2x—3)=0,
解得久1=-1,x2—|.
故選:C.
先移項(xiàng),再提取公因式分解因式,最后求解方程.
本題考查一元二次方程的求解;掌握一元二次方程的求解方法是解題的關(guān)鍵.
11.【答案】D
【解析】解:;y=/—2久+1=(%—1)2,
拋物線開口向上,對(duì)稱軸為直線久=1,
???點(diǎn)4(0,乃),8(1,%),。(―2,%)是拋物線丫=/-2%+1上的三點(diǎn),
(7(2,%)離對(duì)稱軸的距離最遠(yuǎn),8(1,%)在對(duì)稱軸上,
???內(nèi)>%>,?
故選:D.
根據(jù)二次函數(shù)的性質(zhì)得到拋物線y="2-2%+1的開口向上,對(duì)稱軸為直線x=l,然后根據(jù)三個(gè)點(diǎn)離對(duì)
稱軸的遠(yuǎn)近判斷函數(shù)值的大小.
本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟知二次函數(shù)的性質(zhì)是解題的關(guān)鍵.
12.【答案】B
【解析】解???四邊形A8M。是圓內(nèi)接四邊形,>4
.-./.BAO+乙BMO=180°,/
???ABMO=120°,
AZ.BAO=60°.
???4B是圓的直徑,
???^AOB=90°,
.-./.ABO=90°-^BAO=30°,
1
'.AO=拜,
???/的坐標(biāo)是(0,5),
OA—5,
AB—10,
???則OC的半徑為5.
故選:B.
由圓內(nèi)接四邊形的性質(zhì)得到NB力。+NBM。=180°,求出AB40=60。.由圓周角定理得到乙10B=90°,求
出乙4B。=90。一NBA。=30。,得到由2的坐標(biāo)是(0,5),得到。4=5,因此4B=10,即可求
出OC的半徑為5.
本題考查圓周角定理,圓內(nèi)接四邊形的性質(zhì),含30。角的直角三角形,關(guān)鍵是由含30。角的直角三角形的性
質(zhì)得到力。=^AB.
13.【答案】A
【解析】解:根據(jù)圖1可知,
???△ABC^AADE是等腰直角三角形,
.-?乙CAB=45°,
即^ABC繞點(diǎn)4逆時(shí)針旋轉(zhuǎn)45??傻健鰽DE-.
???△2BC和△4DE是等腰直角三角形,
ZDXF=^CAB=45°,
.-?乙FAB=^LDAE+/.CAB=90°,
即圖1可以逆時(shí)針連續(xù)旋轉(zhuǎn)90。得到圖2.
故選:A.
圖1中可知旋轉(zhuǎn)角是NEAB,再結(jié)合等腰直角三角形的性質(zhì),易求NE4B;圖2中是把圖1作為基本圖形,那
么旋轉(zhuǎn)角就是NF4B,結(jié)合等腰直角三角形的性質(zhì)易求4FAB.
本題考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì),解題的關(guān)鍵是理解旋轉(zhuǎn)的性質(zhì),能找對(duì)旋轉(zhuǎn)中心、旋轉(zhuǎn)
角.
14.【答案】C
【解析】解:由題意,???點(diǎn)4(1,2),B(-2,1),
??.不等式ax+b>K的解集是一次函數(shù)y=ax+b的圖象在反比例函數(shù)y=■圖象上方的部分對(duì)應(yīng)的自變量的
取值范圍.
結(jié)合圖象,一2<久<0或x>l.
故選:C.
依據(jù)題意,直接利用圖象法由一次函數(shù)圖象在反比例函數(shù)圖象上方的部分對(duì)應(yīng)的自變量即為所求,進(jìn)而得
解.
本題主要考查了一次函數(shù)與反比例函數(shù)綜合,解題時(shí)要能根據(jù)圖象找到對(duì)應(yīng)的自變量是關(guān)鍵.
15.【答案】A
【解析】解:①連接2D,交BE于點(diǎn)。,
??,正六邊形4BCDEF中,ABAO=AABO=乙OED=4ODE=60°,
△4。8和4DOE是等邊三角形,
0A=0D,OB=0E,
???BM=EN,
??.0M=ON,
四邊形4MDN是平行四邊形,故①符合題意;
@AFAN=MDM,^CDA=4DAF,
???/LOAN=Z-ODMf
??.AN//DM,
在△NON和△DOM中,
20AN=^ODM
OA=OD
、乙AON=乙DOM
:△AON三4DOM(ASA),
???AN=DM,
.?.四邊形力MDN是平行四邊形,故②符合題意;
③???AM=DN,AB=DE,乙ABM=4DEN,
與ADEN不一定全等,不能得出四邊形4MDN是平行四邊形,故③不符合題意;
④在△28用和4DEN中,
24MB=乙DNE
^ABM=乙DEN,
.AB=DE
.-.AABM=^DEN(AAS),
AAM=DN,
???乙4MB+乙AMN=180°,4DNM+乙DNE=180°,
.-?乙AMN=乙DNM,
AM//DN,
四邊形4MDN是平行四邊形,故④符合題意,
綜上所述:符合題意的是①②④.
故選:A.
①連接A。,交BE于點(diǎn)0,證出。M=ON,由對(duì)角線互相平分的四邊形是平行四邊形可得出結(jié)論;②證明
AAON=ADOM(ASA),由全等三角形的性質(zhì)得出AN=DM,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四
邊形可得出結(jié)論;③不能證明AABM與ADEN全等,則可得出結(jié)論;④證明△4BM三△DENQ44S),得出
AM=DN,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可得出結(jié)論.
本題考查了平行四邊形的判定,全等三角形的判定與性質(zhì),正六邊形的性質(zhì),熟練掌握平行四邊形的判定
是解題的關(guān)鍵.
16.【答案】D
【解析】解:,?,二次函數(shù)y=(a-l)x2-(2a-3)x+a-4的圖象與久軸有兩個(gè)公共點(diǎn),
則A>0且a*1,
7
當(dāng)>。時(shí),解得
4=(—2a+3)2—4(a—l)(ci-4)=Set—7Q>—O>
???a取滿足條件的最小整數(shù),而QH1,
故Q=2,
當(dāng)a=2時(shí),y=(a—l)x2—(2a—3)x+a—4=x2—%—2,
設(shè)原拋物線交無(wú)軸于點(diǎn)/、B,交y軸于點(diǎn)C,將圖象在%軸上方的部分沿久軸翻折,其余部分保持不變,得到
一個(gè)新圖象,如下圖所示,
y
A
對(duì)于y=——x—2,令y=0,則y=——%—2=0,解得x=-1或2,令x=0,則y=-2,
故點(diǎn)4、B、C的坐標(biāo)分別為(-1,0)、(2,0)、(0,-2),
由直線y=k久一2知,該直線過(guò)點(diǎn)C,
①當(dāng)k>。時(shí),
???直線y=kx—2與新圖象恰有三個(gè)公共點(diǎn)時(shí),
則此時(shí)直線過(guò)點(diǎn)B、C,
將點(diǎn)B的坐標(biāo)代入y=kx-2得:0=2k-2,
解得k=1;
②當(dāng)k<0時(shí),
???直線y=kx—2與新圖象恰有三個(gè)公共點(diǎn)時(shí),
則此時(shí)直線過(guò)力、C點(diǎn)或直線與y=x2-x-2只有一個(gè)交點(diǎn),
當(dāng)直線過(guò)點(diǎn)4、。時(shí),
將點(diǎn)4的坐標(biāo)代入直線表達(dá)式得:0=-/c-2,
解得k=—2,
當(dāng)直線與y=x2-x-2只有一個(gè)交點(diǎn)時(shí),
聯(lián)立直線和拋物線的表達(dá)式得:x2-x-2=kx-2,即久2一(4+1)久=o,
則△=(一/c-1)2-4x1x0=0,
解得k=-1,
綜上,k=1或一2或一1,
故選:D.
由二次函數(shù)丫=缶一1)/一(2£1-3)%+(1-4的圖象與%軸有兩個(gè)公共點(diǎn),則4>0且。71,得到a=2.①
當(dāng)k〉0時(shí),直線y=kx-2與新圖象恰有三個(gè)公共點(diǎn)時(shí),此時(shí)直線過(guò)點(diǎn)B、C,故將點(diǎn)B的坐標(biāo)代入y=
kx-2,即可求解;②當(dāng)k<0時(shí),直線y=kx-2與新圖象恰有三個(gè)公共點(diǎn)時(shí),則此時(shí)直線過(guò)4C點(diǎn)或
直線與y=產(chǎn)—x—2只有一個(gè)交點(diǎn),進(jìn)而求解.
本題考查的是拋物線與無(wú)軸的交點(diǎn),涉及到一次函數(shù)、根的判別式等知識(shí)點(diǎn),分類求解是本題解題的關(guān)
鍵.
17.【答案】(-1,0)
【解析】解:設(shè)力(a,0),
當(dāng)x=0時(shí),y—3,
.?”(0,3),
oc=3,
在正方形。CDE中,
CD=OC=3,
???D(3,3),
根據(jù)拋物線的對(duì)稱性得:0+3=a+4,
解得:a=-1,
.-?71(-1,0),
故答案為:(-1,0).
先根據(jù)正方形的性質(zhì)求出。的坐標(biāo),再根據(jù)拋物線的對(duì)稱性求解.
本題考查了拋物線的與x軸的交點(diǎn),掌握拋物線的對(duì)稱性是解題的關(guān)鍵.
18.【答案】477110°
【解析】解:???48,4C分別與O。相切于點(diǎn)B,C,AO=8,BO=6,;,
???AB1OB,/\
AABO=90°,
???AB=AC=<AO2-BO2=V82-62=2"
???MN與。。相切于點(diǎn)P4,\
PM=BM,PN=BN,-----
.-.AM+MN+AN=AM+PM+PN+AN=AM+BM+BN+AN=AB+AC=2^7+277=4萬(wàn)
??.△4MN的周長(zhǎng)是4/7;
連結(jié)。C,在優(yōu)弧BC上取一點(diǎn)D,連結(jié)B。、CD,則ACIOC,
???/.OCA=^OBA=90°,
???^BAC=40°,
???(BOC=360°-/-OCA-Z.OBA-^BAC=140°,
1
???Z-BDC="BOC=70°,
???(BPC=180°-乙BDC=110°,
故答案為:477,110°.
由ZB,AC分別與。。相切于點(diǎn)C,得乙48。=90。,則ZB="二『/一BO?=2"由切線長(zhǎng)定
理得=PN=BN,可求得AM+MN+/N=/8+/C=4,7,所以△AMN的周長(zhǎng)是4,7;連結(jié)
OC,在優(yōu)弧BC上取一點(diǎn)。,連結(jié)CD,由NOC4=^OBA=90°,^LBAC=40°,得上BOC=360°-
^OCA-Z.OBA-ABAC=140°,所以/BDC==70。,則4BPC=180。一/BOC=110。,于是得
到問(wèn)題的答案.
此題重點(diǎn)考查切線的性質(zhì)定理、切線長(zhǎng)定理、勾股定理、四邊形的內(nèi)角和等于360。、圓周角定理等知識(shí),
正確地作出所需要的輔助線是解題的關(guān)鍵.
19.【答案】(2/2,-1)12
【解析】解:連接。D,作AM1%軸于點(diǎn)M,ON,無(wú)軸于點(diǎn)N,
???四邊形4BCD是正方形,
OA=OC=OD,4AOD=90°,AOAD=45°,
vAM1%軸,DN1%軸,
???乙4M。=乙OND=90°,
???2LAOM+乙DON=90°,^AOM+Z.OAM=90°,
???乙DON=/LOAM,
.-.△T4OM=AODN{AAS),
??.OM=DN,AM=ON,
①將力(1,6)代入y=竽,
得m=2A/-2>
AX(l,272),
OM=DN=1,AM=ON=2^2,
.--0(272,-1),
故答案為:(272,-1).
②作EF1。4于點(diǎn)F,
???CE平分NamEF1OA,EDLCD,
??.ED=EF,
在Rt4/E尸中,Z.OAD=45°,
??.AE=UiEF,
AE=y/~2ED,
??,AM1%軸,DN1%軸,
??.AAME=乙DNE=90°,
又???乙AEM=乙DEN,
???△/ME—DNE,
AM_AE_y[2
.t*.=—=—,
DNDE1
???OM=DN,
.AM_<2
*.---=—,
OM1
設(shè)。M=%,貝IL4M=彘%,
???點(diǎn)4在函數(shù)y=乎上,
???x?V_2x=2A/-2?
解得%=V~2?
,OA=AC=2V_6?OD=V-6,
■■■S正方形ABCD=2直XX1x2=12.
故答案為:12.
連接。D,作AMlx軸于點(diǎn)M,軸于點(diǎn)N,由正方形的對(duì)角線相等且互相垂直平分,得。4=。。=
OD,/-AOD=90°,/.OAD=45°,^jvERt△AOM=RtAODN,再依據(jù)全等三角形的性質(zhì)得OM=DN,
AM=ON.
①根據(jù)已知條件,求出點(diǎn)4坐標(biāo)為(1,2,?。纯汕蟪鳇c(diǎn)。的坐標(biāo).
②作EF104于點(diǎn)F,當(dāng)CE平分乙4CD時(shí),根據(jù)角平分線的性質(zhì)易證ED=EF,在RtAAEF中,ZOXD=
45°,所以4E==,IED,因?yàn)锳Mlx軸,DNlx軸,易證AAMESADNE,瑞=蔡=苧,又因
為OM=DN,所以空=空,設(shè)。M=久,貝(MM=x-^TZx=2y[2>解得x=所以。4=
OM1
AC=2V_6,OD=V_6,求得=2V6xV_6x|x2=12.
本題主要考查了反比例函數(shù)與幾何綜合,及正方形的性質(zhì),添輔助線構(gòu)成全等三角形和相似三角形是解題
的關(guān)鍵,本題難度較大.
20.【答案】解:在RtABCE中,BC=80m,Z.BEC=/.DBE=45°,
.-?乙CBE=45°,
.-.Z.BEC=/.CBE=45°,
CE=BC=80m.
在RtABCF中,BC=80m,乙BFC=ADBF=31°,tan/BFC=雉,
CF
黑:?0.60.
CF
CF?133.3.
.?.EF=CF-CE=133.3-80=53.3?53(m).
答:河寬EF的長(zhǎng)約為53nl.
【解析】根據(jù)等腰三角形的性質(zhì)可得CE=BC=80M.在Rt△BC/中,由三角函數(shù)的定義求出CF的長(zhǎng),根
據(jù)線段的和差即可求出ER的長(zhǎng)度.
此題主要考查了解直角三角形的應(yīng)用-仰角俯角問(wèn)題,正確記憶銳角三角函數(shù)關(guān)系是解題關(guān)鍵.
21.【答案】解:根據(jù)題意得:2m2-7m+l=0,
???2m2—7m=—1,
???m(2m—7)+5=2m2—7m+5=—1+5=4.
【解析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.把%=
租入方程即可得至IJ27n2一7血的形式,再整體代入2血2-7血=-1,即可求解.
此題主要考查了方程解的定義和代數(shù)式求值,利用方程解的定義找到相等關(guān)系,再把此相等關(guān)系整體代入
所求代數(shù)式,即可求出代數(shù)式的值.
22.【答案】(1)證明:???48是。。的直徑,CD是。0的弦,且
BC=BD,
???乙BCD=乙CDB,
-:BD=BD,
???Z-A=乙BCD,
Z.CDB=Z-A;
(2)解:???(DBC=120°,
1
???乙BCD=乙CDB=楙(180°-乙DBC)=30°,
.??乙4=乙CDB=30°,
???48是。。的直徑,且48=8,
???^LADB=90°,
???在中,BD=\AB=4,
又???BC=BD^
BC=BD=4;
???AB1CD,乙BCD=Z.CDB=30°,
;在RtABCE中,BE=5BC=2,
CE=<BC2-BE2=,42-22=2痼,
又;AB是G)。的直徑,AB1CD,
:.CD=2CE=4<3.
【解析】(1)根據(jù)垂徑定理得出前=防,然后根據(jù)“同弧或等弧所對(duì)的圓周角相等”證明結(jié)論;
(2)根據(jù)直徑得出乙4DB=90。,根據(jù)“直角三角形中,30度角所對(duì)的直角邊等于斜邊的一半”,可得8。=
=4,根據(jù)同圓中弧和弦的關(guān)系可求得BC的長(zhǎng)度;在RtABCE中,根據(jù)含30度角的直角三角形的性質(zhì)
可得BE=|fiC=2,再利用勾股定理解得CE=7BC?-BE2=2^3,然后根據(jù)垂徑定理可得CD=2CE,
即可求出CD的長(zhǎng)度.
本題主要考查了垂徑定理、直徑所對(duì)的弦為直徑、同圓或等圓中弧與弦的關(guān)系、含30度角的直角三角形的
性質(zhì)、勾股定理等知識(shí),理解并掌握垂徑定理是解題關(guān)鍵.
23.【答案】(1)證明:???四邊形4BCD是平行四邊形,
AD//BC,CD//AB,
Z.D=Z-FAD,Z-DCE=Z.F,
???E是AO的中點(diǎn),
DE=AE,
??.△CDE三△94EQ4AS),
??.CE=EF,
AE//BC,
FAFE
.*.———=41,
ABCE
??.AF=AB;
(2)①證明:???力G=2,FG=6,
AF=FG+AG=6+2=8,
,AB=AF=8,
???四邊形4BCD是平行四邊形,
???CD=AB=8,
.:乙DCE=^F,乙FCG=CFCD,
???Z-F=Z-FCGf
???CG=FG=6,
??,CD//AF,
??△DCHfAGH,
.AH_GH
'?DH=CH"
AH?CH=DH,GH;
②解:由①得
CDCH86-GH
—=—,艮nn一=----,
AGGH2GH
GH=1.2.
【解析】(1)先根據(jù)44s證明ACDE三△兄4E,得CE=EF,再根據(jù)平行線分線段成比例定理可得結(jié)論;
(2)①先根據(jù)(1)可得:AB^AF=8,由平行線的性質(zhì)和等腰三角形的判定可得CG=GF=6,證明△
DCH-AAGH,進(jìn)而得證;
②禾!!用△DCHs/kAG”,列比例式可得GH的長(zhǎng).
本題考查平行四邊形的性質(zhì),相似三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識(shí),掌握三角形全
等和相似的性質(zhì)和判定是解本題的關(guān)鍵.
24.【答案】300
【解析】解:(1)本次調(diào)查共抽取的學(xué)生人數(shù)為:30+10%=300(人);
故答案為:300;
(2)根據(jù)題意可知:
花樣跳繩的人數(shù)為:300-40-100-30-50=80(人);
補(bǔ)全條形圖如下:
學(xué)生對(duì)五門興趣課程喜愛(ài)學(xué)生對(duì)五門興趣課程喜愛(ài)
(3)根據(jù)題意可知:
電腦編程”所對(duì)應(yīng)扇形的圓心角度數(shù)為:段x360°=120°;
(4)全校選擇“民族舞蹈”課程的學(xué)生人數(shù)為:黑x1200=200(人);
(5)列表如下:
ABC
AA,AB,AC,A
B4,BB,BC,B
CA,CB,CC,C
共有9種等可能的結(jié)果,其中甲乙兩人至少有一人抽到力有5種,
所以兩人至少有一人抽到4《出師表》的概率為今
(1)由國(guó)畫賞析的人數(shù)除以所占的百分比,即可得到答案;
(2)利用抽取的總?cè)藬?shù)減去其他項(xiàng)目的人數(shù),再補(bǔ)全條形圖即可;
(3)先求電腦編程所占百分比
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版辦公家具租賃售后服務(wù)合同客戶滿意3篇
- 2025年物業(yè)合同管理及突發(fā)事件應(yīng)對(duì)預(yù)案3篇
- 二零二五年度鋁合金包裝材料采購(gòu)合同樣本3篇
- 2025年度船舶??看a頭泊位租賃合同范本4篇
- 二零二四全新草牧場(chǎng)農(nóng)業(yè)廢棄物資源化利用合同3篇
- 二零二五版貨物物流金融服務(wù)合同3篇
- 2025年廠房施工與智能化管理咨詢服務(wù)合同4篇
- 2025年度有機(jī)農(nóng)業(yè)承包土地種植管理合同3篇
- 二零二五年度綠化用水合同續(xù)簽與變更協(xié)議4篇
- 二零二五年度個(gè)人汽車貸款合同樣本4篇
- 2024版?zhèn)€人私有房屋購(gòu)買合同
- 2025年山東光明電力服務(wù)公司招聘筆試參考題庫(kù)含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 2025年中建六局二級(jí)子企業(yè)總經(jīng)理崗位公開招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識(shí)與能力素質(zhì)】真題及答案解析(管理類和其他類)
- 注漿工安全技術(shù)措施
- 2024年世界職業(yè)院校技能大賽“食品安全與質(zhì)量檢測(cè)組”參考試題庫(kù)(含答案)
- 3-9年級(jí)信息技術(shù)(人教版、清華版)教科書資源下載
- 上海牛津版三年級(jí)英語(yǔ)3B期末試卷及答案(共5頁(yè))
- 行為疼痛量表BPS
- 小學(xué)生必背古詩(shī)詞80首(硬筆書法田字格)
評(píng)論
0/150
提交評(píng)論