江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州市、常熟市2023-2024學年九年級數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,螺母的一個面的外沿可以看作是正六邊形,這個正六邊形ABCDEF的半徑是2cm,則這個正六邊形的周長是()A.12 B.6 C.36 D.122.把拋物線y=x2向上平移3個單位,平移后拋物線的表達式是()A.y=-3 B.y=+3 C.y= D.y=3.用求根公式計算方程的根,公式中b的值為()A.3 B.-3 C.2 D.4.一元二次方程x2+x=0的根是()A.x1=0,x2=1 B.x1=0,x2=﹣1 C.x1=x2=0 D.x1=x2=15.用一個半徑為15、圓心角為120°的扇形圍成一個圓錐,則這個圓錐的底面半徑是()A.5 B.10 C. D.6.比較cos10°、cos20°、cos30°、cos40°大小,其中值最大的是()A.cos10° B.cos20° C.cos30° D.cos40°7.下列命題正確的是(

)A.圓是軸對稱圖形,任何一條直徑都是它的對稱軸B.平分弦的直徑垂直于弦,并且平分弦所對的弧C.相等的圓心角所對的弧相等,所對的弦相等D.同弧或等弧所對的圓周角相等8.如圖,某中學計劃靠墻圍建一個面積為的矩形花圃(墻長為),圍欄總長度為,則與墻垂直的邊為()A.或 B. C. D.9.已知x=1是一元二次方程mx2–2=0的一個解,則m的值是().A. B.2 C. D.1或210.如圖,在平面直角坐標系中,菱形ABCD的頂點A(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上,若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為()A.15 B.20 C.25 D.30二、填空題(每小題3分,共24分)11.如圖已知二次函數(shù)y1=x2+c與一次函數(shù)y2=x+c的圖象如圖所示,則當y1<y2時x的取值范圍_____.12.用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,首先應假設P在__________.13.慶“元旦”,市工會組織籃球比賽,賽制為單循環(huán)形式(每兩隊之間都賽一場),共進行了45場比賽,求這次有多少隊參加比賽?若設這次有x隊參加比賽,則根據(jù)題意可列方程為_____.14.如圖,點A在雙曲線上,點B在雙曲線上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為矩形,則它的面積為.15.下面是“用三角板畫圓的切線”的畫圖過程.如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.所以直線AD就是過點A的圓的切線.請回答:該畫圖的依據(jù)是______________________________________.16.如圖,在中,,,點是邊的中點,點是邊上一個動點,當__________時,相似.17.如圖,菱形ABCD的三個頂點在二次函數(shù)的圖象上,點A、B分別是該拋物線的頂點和拋物線與y軸的交點,則點D的坐標為____________.18.如圖,折疊長方形的一邊AD,使點D落在BC邊的點F處,已知AB=8cm,BC=10cm,則EF=________.三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結AD(AD<AB),將線段AD繞點A逆時針旋轉90°,得到線段AE,連結DE,CE,BD.(1)請根據(jù)題意補全圖1;(2)猜測BD和CE的數(shù)量關系并證明;(3)作射線BD,CE交于點P,把△ADE繞點A旋轉,當∠EAC=90°,AB=2,AD=1時,補全圖形,直接寫出PB的長.20.(6分)分別用定長為a的線段圍成矩形和圓.(1)求圍成矩形的面積的最大值;(用含a的式子表示)(2)哪種圖形的面積更大?為什么?21.(6分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調(diào)查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.請根據(jù)圖中信息解決下列問題:(1)共有多少名同學參與問卷調(diào)查;(2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數(shù)約為多少.22.(8分)如圖,在△ABC中,AB=AC,⊙O是△ABC的外接圓,D為弧AC的中點,E是BA延長線上一點,∠DAE=105°.(1)求∠CAD的度數(shù);(2)若⊙O的半徑為4,求弧BC的長.23.(8分)計算:.24.(8分)在如圖所示的平面直角坐標系中,已知△ABC.(1)將△ABC向左平移4個單位得到△A1B1C1,畫出△A1B1C1的圖形,并寫出點A1的坐標.(2)以原點O為旋轉中心,將△ABC順時針旋轉90°得到△A2B2C2,畫出△A2B2C2圖形,并寫出點A2的坐標.25.(10分)如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點,直線l是拋物線的對稱軸.(1)求拋物線的函數(shù)關系式;(2)設點P是直線l上的一個動點,當點P到點A、點B的距離之和最短時,求點P的坐標;(3)點M也是直線l上的動點,且△MAC為等腰三角形,請直接寫出所有符合條件的點M的坐標.26.(10分)五一期間,小紅和爸爸媽媽去開元寺參觀,對東西塔這對中國現(xiàn)存最高也是最大的石塔贊嘆不已,也對石塔的高度產(chǎn)生了濃厚的興趣.小紅進行了以下的測量:她到與西塔距離27米的一棟大樓處,在樓底A處測得塔頂B的仰角為60°,再到樓頂C處測得塔頂B的仰角為30°.那么你能幫小紅計算西塔BD和大樓AC的高度嗎?

參考答案一、選擇題(每小題3分,共30分)1、D【分析】由正六邊形的性質(zhì)證出△AOB是等邊三角形,由等邊三角形的性質(zhì)得出AB=OA,即可得出答案【詳解】設正六邊形的中心為O,連接AO,BO,如圖所示:∵O是正六邊形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等邊三角形,∴AB=OA=2cm,∴正六邊形ABCDEF的周長=6AB=12cm.故選D【點睛】此題主要考查了正多邊形和圓、等邊三角形的判定與性質(zhì);根據(jù)題意得出△AOB是等邊三角形是解題關鍵.2、B【分析】根據(jù)二次函數(shù)圖像平移規(guī)律:上加下減,可得到平移后的函數(shù)解析式.【詳解】∵拋物線y=x2向上平移3個單位,∴平移后的拋物線的解析式為:y=x2+3.故答案為:B.【點睛】本題考查二次函數(shù)的平移,熟記平移規(guī)律是解題的關鍵.3、B【分析】根據(jù)一元二次方程的定義來解答:二次項系數(shù)是a、一次項系數(shù)是b、常數(shù)項是c.【詳解】解:由方程根據(jù)一元二次方程的定義,知一次項系數(shù)b=-3,故選:B.【點睛】本題考查了解一元二次方程的定義,關鍵是往往把一次項系數(shù)-3誤認為3,所以,在解答時要注意這一點.4、B【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可選出答案.【詳解】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=?1,故選B.【點睛】本題考查了因式分解法求一元二次方程的根.5、A【分析】根據(jù)弧長公式計算出弧長,圓錐的底面周長等于側面展開圖的扇形弧長,因而圓錐的底面周長是10π,設圓錐的底面半徑是r,列出方程求解.【詳解】半徑為15cm,圓心角為120°的扇形的弧長是=10π,圓錐的底面周長等于側面展開圖的扇形弧長,因而圓錐的底面周長是10π.

設圓錐的底面半徑是r,

則得到2πr=10π,

解得:r=5,

這個圓錐的底面半徑為5.故選擇A.【點睛】本題考查弧長的計算,解題的關鍵是掌握弧長的計算公式.6、A【解析】根據(jù)同名三角函數(shù)大小的比較方法比較即可.【詳解】∵,∴.故選:A.【點睛】本題考查了同名三角函數(shù)大小的比較方法,熟記銳角的正弦、正切值隨角度的增大而增大;銳角的余弦、余切值隨角度的增大而減?。?、D【分析】根據(jù)圓的對稱性、圓周角定理、垂徑定理逐項判斷即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,其對稱軸是直徑所在的直線或過圓心的直線,此命題不正確;B.平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧,此命題不正確;C.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,此命題不正確;D.同弧或等弧所對的圓周角相等,此命題正確;故選:D.【點睛】本題考查的知識點是圓的對稱性、圓周角定理以及垂徑定理,需注意的是對稱軸是一條直線并非是線段,而圓的兩條直徑互相平分但不一定垂直.8、C【分析】設與墻相對的邊長為(28-2x)m,根據(jù)題意列出方程x(28-2x)=80,求解即可.【詳解】設與墻相對的邊長為(28-2x)m,則0<28-2x≤12,解得8≤x<14,根據(jù)題意列出方程x(28-2x)=80,解得x1=4,x2=10因為8≤x<14∴與墻垂直的邊為10m故答案為C.【點睛】本題考查一元二次方程的應用,根據(jù)題意列出方程并求解是解題的關鍵,注意題中限制條件,選取適合的x值.9、B【分析】根據(jù)一元二次方程的解的定義,把x=1代入mx2–2=0可得關于m的一元一次方程,解方程求出m的值即可得答案.【詳解】∵x=1是一元二次方程mx2–2=0的一個解,∴m-2=0,解得:m=2,故選:B.【點睛】本題考查一元二次方程的解的定義,把求未知系數(shù)的問題轉化為方程求解的問題,能夠使方程左右兩邊相等的未知數(shù)的值叫做方程的解;熟練掌握定義是解題關鍵.10、B【分析】根據(jù)拋物線的解析式結合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】解:拋物線的對稱軸為,∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,

∴點C的橫坐標為-1.

∵四邊形ABCD為菱形,

∴AB=BC=AD=1,

∴點D的坐標為(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD?OB=1×4=3.

故選:B.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結合勾股定理求出AD=1、OB=4是解題的關鍵.二、填空題(每小題3分,共24分)11、0<x<1.【解析】首先將兩函數(shù)解析式聯(lián)立得出其交點橫坐標,進而得出當y1<y2時x的取值范圍.【詳解】解:由題意可得:x2+c=x+c,解得:x1=0,x2=1,則當y1<y2時x的取值范圍:0<x<1.故答案為0<x<1.【點睛】此題主要考查了二次函數(shù)與一次函數(shù),正確得出兩函數(shù)的交點橫坐標是解題關鍵.12、⊙O上或⊙O內(nèi)【分析】直接利用反證法的基本步驟得出答案.【詳解】解:用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,

首先應假設:若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O上或⊙O內(nèi).

故答案為:在⊙O上或⊙O內(nèi).【點睛】此題主要考查了反證法,正確掌握反證法的解題方法是解題關鍵.13、=45【分析】設這次有x隊參加比賽,由于賽制為單循環(huán)形式(每兩隊之間都賽一場),則此次比賽的總場數(shù)為:場.根據(jù)題意可知:此次比賽的總場數(shù)=45場,依此等量關系列出方程.【詳解】解:設這次有x隊參加比賽,則此次比賽的總場數(shù)為場,根據(jù)題意列出方程得:=45,故答案是:.【點睛】考查了由實際問題抽象出一元二次方程,本題的關鍵在于理解清楚題意,找出合適的等量關系,列出方程,再求解.需注意賽制是“單循環(huán)形式”,需使兩兩之間比賽的總場數(shù)除以1.14、2【詳解】如圖,過A點作AE⊥y軸,垂足為E,∵點A在雙曲線上,∴四邊形AEOD的面積為1∵點B在雙曲線上,且AB∥x軸,∴四邊形BEOC的面積為3∴四邊形ABCD為矩形,則它的面積為3-1=215、90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線【詳解】解:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據(jù)經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.故答案為90°的圓周角所對的弦是直徑,經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.點睛:本題考查了復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.16、【分析】直接利用,找到對應邊的關系,即可得出答案.【詳解】解:當時,

則,

∵,點是邊的中點,

∴∵,∴則綜上所述:當BQ=時,.

故答案為:.【點睛】此題主要考查了相似三角形的性質(zhì),得到對應邊成比例是解答此題的關鍵.17、(2,).【詳解】解:由題意可知:拋物線y=ax2-2ax+(a<0)的對稱軸是直線x=1,與y軸的交點坐標是(2,),即點B的坐標是(2,)由菱形ABCD的三個頂點在二次函數(shù)y=ax2-2ax+(a<0)的圖象上,點A,B分別是拋物線的頂點和拋物線與y軸的交點,∴點B與點D關于直線x=1對稱,得到點D的坐標為(2,).故答案為(2,).18、5cm【分析】先求出BF、CF的長,利用勾股定理列出關于EF的方程,即可解決問題.【詳解】∵四邊形ABCD為矩形,∴∠B=∠C=90°;由題意得:AF=AD=BC=10,ED=EF,設EF=x,則EC=8?x;由勾股定理得:BF2=AF2?AB2=36,∴BF=6,CF=10?6=4;由勾股定理得:x2=42+(8?x)2,解得:x=5,故答案為:5cm.【點睛】該題主要考查了翻折變換及其應用問題;解題的關鍵是靈活運用勾股定理等幾何知識來分析、判斷、推理或解答.三、解答題(共66分)19、(1)答案見解析;(2)BD=CE,證明見解析;(3)PB的長是或.【解析】試題分析:(1)根據(jù)題意畫出圖形即可;(2)根據(jù)“SAS”證明△ABD≌△ACE,從而可得BD=CE;(3)①根據(jù)“SAS”可證△ABD≌△ACE,從而得到∠ABD=∠ACE,再由兩角對應相等的兩個三角形相似可證△ACD∽△PBE,列比例方程可求出PB的長;②與①類似,先求出PD的長,再把PD和BD相加.解:(1)如圖(2)BD和CE的數(shù)量是:BD=CE;∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠CAE.∵AD=AE,AB=AC,∴△ABD≌△ACE,∴BD=CE.(3)①CE=.∵△ABD≌△ACE,∴∠ABD=∠ACE,∴△ACD∽△PBE,,∴;②∵△ABD∽△PDC,,∴;∴PB=PD+BD=.∴PB的長是或.20、(1)矩形面積的最大值為;(2)圓的面積大.【分析】(1)設矩形的一邊長為b,則另外一邊長為b,由S矩形=b(b)=﹣(b)2可得答案;(2)設圓的半徑為r,則r,知S圓=πr2,比較大小即可得.【詳解】(1)設矩形的一邊長為b,則另外一邊長為b,S矩形=b(b)=﹣(b)2,∴矩形面積的最大值為;(2)設圓的半徑為r,則r,S圓=πr2.∵4π<16,∴,∴S圓>S矩,∴圓的面積大.【點睛】本題考查了列代數(shù)式與二次函數(shù)的最值,用到的知識點是圓的面積公式、矩形的面積公式、二次函數(shù)的最值,關鍵是根據(jù)題意列出代數(shù)式.21、(1)參與問卷調(diào)查的學生人數(shù)為100人;(2)補全圖形見解析;(3)估計該校學生一個月閱讀2本課外書的人數(shù)約為570人.【分析】(1)由讀書1本的人數(shù)及其所占百分比可得總人數(shù);(2)總人數(shù)乘以讀4本的百分比求得其人數(shù),減去男生人數(shù)即可得出女生人數(shù),用讀2本的人數(shù)除以總人數(shù)可得對應百分比;(3)總人數(shù)乘以樣本中讀2本人數(shù)所占比例.【詳解】(1)參與問卷調(diào)查的學生人數(shù)為(8+2)÷10%=100人,(2)讀4本的女生人數(shù)為100×15%﹣10=5人,讀2本人數(shù)所占百分比為×100%=38%,補全圖形如下:(3)估計該校學生一個月閱讀2本課外書的人數(shù)約為1500×38%=570人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.22、(1)∠CAD=35°;(2).【分析】(1)由AB=AC,得到=,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到結論;(2)根據(jù)平角的定義得到∠BAC=40°,連接OB,OC,根據(jù)圓周角定理得到∠BOC=80°,根據(jù)弧長公式即可得到結論.【詳解】(1)∵AB=AC,∴=,∴∠ABC=∠ACB,∵D為的中點,∴=,∴∠CAD=∠ACD,∴=2,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD=×105°=35°,∴∠CAD=35°;(2)∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,連接OB,OC,∴∠BOC=80°,∴弧BC的長==.【點睛】本題考查了三角形的外接圓和外心,圓心角、弧、弦的關系和圓周角定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。?3、1-.【解析】分別把各特殊角的三角函數(shù)值代入,再根據(jù)實數(shù)的運算法則進行計算.【詳解】原式=4×-3×+2××=1-.【點睛】本題考查了特殊角的三角函數(shù)值.熟記特殊角的三角函數(shù)值是解題的關鍵.24、(1)圖見解析,A1(-1,3);(2)圖見解析,A2(3,-3).【分析】(1)依據(jù)平移的性質(zhì)畫出△A1B1C1圖象,寫出A1坐標即可;(2)依據(jù)旋轉的性質(zhì)確定出點A2、B2、C2,連線畫出△A2B2C2,表達出A2坐標即可.【詳解】解:(1)如圖所示:△A1B1C1即為所求,A1(-1,3)(2)如圖所示:△A2B2C2為所求,A2(3,-3),【點睛】本題考查了作圖——旋轉變換及平移變換,解題的關鍵是能夠理解平移及旋轉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論