(江蘇專用)高考數(shù)學(xué) 專題6 數(shù)列 40 數(shù)列的概念及表示 文-人教版高三數(shù)學(xué)試題_第1頁
(江蘇專用)高考數(shù)學(xué) 專題6 數(shù)列 40 數(shù)列的概念及表示 文-人教版高三數(shù)學(xué)試題_第2頁
(江蘇專用)高考數(shù)學(xué) 專題6 數(shù)列 40 數(shù)列的概念及表示 文-人教版高三數(shù)學(xué)試題_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

訓(xùn)練目標(biāo)(1)數(shù)列的概念與性質(zhì);(2)數(shù)列的前n項和Sn與an的關(guān)系.訓(xùn)練題型(1)由數(shù)列的前幾項寫數(shù)列的通項公式;(2)遞推數(shù)列問題;(3)由Sn求an的問題.解題策略(1)由數(shù)列前幾項寫通項公式時,可將各項適當(dāng)變形,觀察各項與項數(shù)之間的關(guān)系;(2)數(shù)列是特殊的函數(shù),其自變量只能取正整數(shù),可從函數(shù)觀點研究數(shù)列;(3)an=eq\b\lc\{\rc\(\a\vs4\al\co1(S1,n=1,,Sn-Sn-1,n≥2.))1.已知數(shù)列eq\r(3),eq\r(7),eq\r(11),eq\r(15),…,則5eq\r(3)是數(shù)列的第________項.2.已知數(shù)列{an}的通項公式為an=eq\f(2,n2+n),則數(shù)列{an}的第5項為________.3.已知數(shù)列{an}的前n項和Sn=2n2-3n+1,那么這個數(shù)列的通項公式an=________.4.(2015·洛陽一模)設(shè)an=-2n2+29n+3,則數(shù)列{an}的最大項是________.5.(2015·深圳五校聯(lián)考)已知數(shù)列{an}滿足a1=3,an+1=eq\f(5an-13,3an-7),則a2016=________.6.(2015·合肥一模)已知an=eq\f(n-7,n-5\r(2)),設(shè)am為數(shù)列{an}的最大項,則m=________.7.已知數(shù)列{an}的通項公式為an=eq\f(1+-1n+1,2),則該數(shù)列的前4項依次為________.8.(2015·安徽江南十校聯(lián)考)在數(shù)列{an}中,a1=2,an+1=an+ln(1+eq\f(1,n)),則an=________.9.(2015·安慶教學(xué)檢測)根據(jù)下面5個圖形及相應(yīng)點的個數(shù)的變化規(guī)律,猜測第n個圖中有________個點.10.若a1=1,an+1=eq\f(an,3an+1),則給出的數(shù)列{an}的第4項是________.11.(2015·張家界統(tǒng)考)已知數(shù)列{an}的通項公式為an=(n+2)(eq\f(7,8))n,則當(dāng)an取得最大值時,n=________.12.(2015·石家莊靈壽一中月考)數(shù)列{an}滿足:a1+3a2+5a3+…+(2n-1)·an=(n-1)·3n+1+3(n∈N*),則數(shù)列{an}的通項公式an=________.13.已知數(shù)列{an}滿足:an≤an+1,an=n2+λn,n∈N*,則實數(shù)λ的最小值是________.14.(2015·天津一中月考)已知{an}的前n項和為Sn,且滿足log2(Sn+1)=n+1,則an=________.答案解析1.192.eq\f(1,15)3.eq\b\lc\{\rc\(\a\vs4\al\co1(0,n=1,,4n-5,n≥2))4.1085.2解析由于a1=3,an+1=eq\f(5an-13,3an-7),所以a2=eq\f(5×3-13,3×3-7)=1,a3=eq\f(5×1-13,3×1-7)=2,a4=eq\f(5×2-13,3×2-7)=3,所以數(shù)列{an}是周期為3的周期數(shù)列,所以a2016=a672×3=a3=2.6.8解析設(shè)函數(shù)f(x)=eq\f(x-7,x-5\r(2))=1+eq\f(5\r(2)-7,x-5\r(2)),作出函數(shù)f(x)的圖象(圖略)可得,當(dāng)x=8時,函數(shù)取得最大值,故a8是數(shù)列{an}的最大項,故m=8.7.1,0,1,0解析當(dāng)n分別等于1,2,3,4時,a1=1,a2=0,a3=1,a4=0.8.2+lnn解析∵an+1=an+ln(1+eq\f(1,n))=an+lneq\f(n+1,n)=an+ln(n+1)-lnn,∴a2=a1+ln2,a3=a2+ln3-ln2,…,an=an-1+lnn-ln(n-1),將上面n-1個式子左右兩邊分別相加,得an=a1+ln2+(ln3-ln2)+(ln4-ln3)+…+[lnn-ln(n-1)]=a1+lnn=2+lnn.9.n2-n+1解析觀察題圖中5個圖形點的個數(shù)分別為1,1×2+1,2×3+1,3×4+1,4×5+1,故第n個圖中點的個數(shù)為(n-1)×n+1=n2-n+1.10.eq\f(1,10)解析a2=eq\f(a1,3a1+1)=eq\f(1,3+1)=eq\f(1,4),a3=eq\f(a2,3a2+1)=eq\f(\f(1,4),\f(3,4)+1)=eq\f(1,7),a4=eq\f(a3,3a3+1)=eq\f(\f(1,7),\f(3,7)+1)=eq\f(1,10).11.5或6解析當(dāng)an取得最大值時,有eq\b\lc\{\rc\(\a\vs4\al\co1(an≥an-1,,an≥an+1,))∴eq\b\lc\{\rc\(\a\vs4\al\co1(n+2\f(7,8)n≥n+1\f(7,8)n-1,,n+2\f(7,8)n≥n+3\f(7,8)n+1.))解得eq\b\lc\{\rc\(\a\vs4\al\co1(n≤6,,n≥5.))∴n=5或6.12.3n解析a1+3a2+5a3+…+(2n-3)an-1+(2n-1)an=(n-1)3n+1+3,把n換成n-1,得a1+3a2+5a3+…+(2n-3)an-1=(n-2)3n+3,兩式相減得an=3n.13.-3解析an≤an+1?n2+λn≤(n+1)2+λ(n+1)?λ≥-(2n+1),n∈N*?λ≥-3,所以λ的最小值是-3.14.eq\b\lc\{\rc\(\a\vs4\al\co1(3,n=1,,2n,n≥2))解析由已知條件可得S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論