二維碳材料石墨烯研究進展_第1頁
二維碳材料石墨烯研究進展_第2頁
二維碳材料石墨烯研究進展_第3頁
二維碳材料石墨烯研究進展_第4頁
二維碳材料石墨烯研究進展_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

二維碳材料石墨烯研究進展一、本文概述二維碳材料石墨烯自被發(fā)現(xiàn)以來,就以其獨特的物理、化學和力學性質(zhì)引起了全球科研人員的廣泛關(guān)注。本文旨在全面綜述石墨烯的研究進展,從石墨烯的基本性質(zhì)出發(fā),深入探討其制備方法、應用領(lǐng)域以及面臨的挑戰(zhàn)。文章首先概述了石墨烯的基本結(jié)構(gòu)和性質(zhì),包括其原子級別的厚度、超強的導電導熱性能以及出色的力學特性。接著,文章詳細介紹了石墨烯的各種制備方法,包括機械剝離法、化學氣相沉積法、氧化還原法等,并分析了各種方法的優(yōu)缺點。然后,文章重點討論了石墨烯在能源、電子、生物醫(yī)學等領(lǐng)域的應用進展,包括石墨烯在太陽能電池、鋰離子電池、超級電容器、觸摸屏、生物傳感器等領(lǐng)域的應用實例。文章總結(jié)了石墨烯研究面臨的主要挑戰(zhàn),包括大規(guī)模制備、穩(wěn)定性、功能性等方面的問題,并對未來的研究方向進行了展望。通過本文的綜述,期望能為讀者提供一個清晰、全面的石墨烯研究進展的脈絡,為相關(guān)領(lǐng)域的研究人員提供有益的參考和啟示。二、石墨烯的制備方法石墨烯,作為一種新興的二維碳納米材料,因其獨特的物理和化學性質(zhì)受到了廣泛的關(guān)注和研究。制備高質(zhì)量的石墨烯是進一步探索其應用的關(guān)鍵。目前,石墨烯的制備方法主要包括機械剝離法、化學氣相沉積法、氧化還原法、碳化硅外延生長法等。機械剝離法:該方法是最早用于制備石墨烯的方法,由Geim和Novoselov于2004年首次報道。其基本原理是通過使用膠帶反復粘貼高定向熱解石墨表面,使得石墨片層逐漸減薄,最終得到單層或少數(shù)幾層的石墨烯。這種方法操作簡單,但產(chǎn)率極低,且制備出的石墨烯尺寸不可控,難以實現(xiàn)大規(guī)模生產(chǎn)?;瘜W氣相沉積法:化學氣相沉積法(CVD)是目前制備大面積、高質(zhì)量石墨烯的主要方法之一。通過在高溫條件下,使含碳氣體在金屬催化劑表面分解并沉積,形成石墨烯。這種方法可以制備出大面積、連續(xù)且均勻的石墨烯薄膜,適用于大規(guī)模生產(chǎn)和應用。氧化還原法:氧化還原法是通過將天然石墨與氧化劑反應,生成氧化石墨,再經(jīng)過熱還原或化學還原得到石墨烯。這種方法原料豐富,成本較低,但制備過程中易引入雜質(zhì),影響石墨烯的純度。碳化硅外延生長法:在超高溫條件下,碳化硅中的硅原子升華,剩余的碳原子重新排列形成石墨烯。這種方法可以制備出高質(zhì)量的石墨烯,但設(shè)備要求高,制備成本昂貴,限制了其在實際生產(chǎn)中的應用。盡管已經(jīng)發(fā)展了多種石墨烯制備方法,但每種方法都有其優(yōu)缺點。因此,在實際應用中,需要根據(jù)具體需求選擇合適的制備方法。隨著科技的不斷進步,未來可能會有更多新的制備方法涌現(xiàn),為石墨烯的研究和應用提供更廣闊的空間。三、石墨烯的基本性質(zhì)石墨烯,作為二維碳材料的代表,具有一系列引人注目的基本性質(zhì)。石墨烯具有極高的電導率,其電子遷移率超過了許多傳統(tǒng)的半導體材料,這使得石墨烯在高速電子器件和集成電路中具有巨大的應用潛力。石墨烯的強度與韌性同樣出類拔萃,其楊氏模量和抗拉強度均遠超鋼鐵和許多其他金屬,使其成為理想的輕質(zhì)高強度材料。石墨烯還具有優(yōu)異的熱導率,使得其在散熱器件和熱能管理領(lǐng)域具有廣闊的應用前景。值得一提的是,石墨烯還具有獨特的光學性質(zhì)。單層石墨烯可以吸收大約3%的可見光,這一特性使得石墨烯在光電器件和太陽能電池等領(lǐng)域具有潛在的應用價值。石墨烯的能帶結(jié)構(gòu)使其具有半金屬特性,即在狄拉克點附近,電子和空穴的有效質(zhì)量幾乎為零,這為石墨烯在電子學和光電子學領(lǐng)域的應用提供了可能。除了上述性質(zhì)外,石墨烯還具有良好的化學穩(wěn)定性和生物相容性,這使得它在生物醫(yī)學、傳感器和藥物傳遞等領(lǐng)域也具有廣泛的應用潛力。隨著科學技術(shù)的不斷發(fā)展,石墨烯的基本性質(zhì)將會被更加深入地研究和應用,為人類社會的進步和發(fā)展做出更大的貢獻。四、石墨烯的應用領(lǐng)域石墨烯,作為一種獨特的二維納米材料,其優(yōu)異的物理、化學和機械性能使得它在多個領(lǐng)域都展現(xiàn)出了廣闊的應用前景。在電子學領(lǐng)域,石墨烯的高載流子遷移率、低電阻率和良好的電導性使其成為下一代納米電子器件的理想候選材料。石墨烯晶體管、石墨烯集成電路和石墨烯基電子傳感器的研發(fā)正在加速進行,有望引領(lǐng)電子科技進入新的發(fā)展階段。在能源領(lǐng)域,石墨烯的大比表面積和高電導性使其成為儲能材料中的佼佼者。石墨烯基電池、超級電容器和燃料電池等新型能源器件的出現(xiàn),為電動汽車、可穿戴設(shè)備和移動電子設(shè)備等領(lǐng)域的能源問題提供了新的解決方案。在生物醫(yī)學領(lǐng)域,石墨烯的生物相容性、良好的光學性質(zhì)和高的藥物負載能力使其成為生物醫(yī)學領(lǐng)域的熱點材料。石墨烯在藥物遞送、生物成像、癌癥治療和生物傳感器等領(lǐng)域的應用正在被深入研究,有望為生物醫(yī)學領(lǐng)域帶來革命性的突破。石墨烯還在復合材料、航空航天、環(huán)保和軍事等領(lǐng)域展現(xiàn)出了巨大的應用潛力。石墨烯增強復合材料的高強度、高模量和輕質(zhì)化特性使其在航空航天領(lǐng)域具有巨大的應用前景。石墨烯的高吸附性能和良好的化學穩(wěn)定性使其在環(huán)保領(lǐng)域成為處理水污染和空氣污染的潛在材料。在軍事領(lǐng)域,石墨烯的高導電性、高強度和良好的隱身性能使其成為隱身材料、傳感器和通信設(shè)備等領(lǐng)域的理想選擇。石墨烯作為一種新興的納米材料,在多個領(lǐng)域都展現(xiàn)出了廣闊的應用前景。隨著科學技術(shù)的不斷發(fā)展,石墨烯的應用領(lǐng)域還將進一步擴大,為人類社會的發(fā)展帶來更多的可能性。五、石墨烯研究面臨的挑戰(zhàn)與問題盡管石墨烯在多個領(lǐng)域展現(xiàn)出令人矚目的應用前景,其研究仍面臨著諸多挑戰(zhàn)與問題。石墨烯的大規(guī)模制備技術(shù)尚不成熟。目前,常用的制備方法如機械剝離法、化學氣相沉積法等,都存在產(chǎn)量低、成本高、質(zhì)量不穩(wěn)定等問題,這限制了石墨烯在工業(yè)領(lǐng)域的大規(guī)模應用。石墨烯的穩(wěn)定性和可控性仍是研究難點。由于石墨烯的化學性質(zhì)相對穩(wěn)定,難以進行化學修飾和功能化,這限制了其在特定應用中的靈活性。同時,石墨烯的電子結(jié)構(gòu)和性質(zhì)受到制備條件、基底材料等多種因素的影響,實現(xiàn)對其性質(zhì)的可控調(diào)節(jié)仍是當前研究的重點。石墨烯的環(huán)境兼容性和安全性問題也不容忽視。石墨烯的大規(guī)模生產(chǎn)和應用可能對環(huán)境產(chǎn)生一定影響,如能源消耗、廢棄物處理等。同時,石墨烯的生物相容性和毒性評估也是其走向?qū)嶋H應用前必須解決的問題。石墨烯的基礎(chǔ)研究仍有待深入。盡管石墨烯的許多基本物理和化學性質(zhì)已經(jīng)被廣泛研究,但其在特定條件下的行為,如與其他材料的相互作用、在特定環(huán)境中的穩(wěn)定性等,仍需進一步探索。石墨烯研究仍面臨著多方面的挑戰(zhàn)和問題。只有解決這些問題,才能推動石墨烯的進一步發(fā)展,實現(xiàn)其在各個領(lǐng)域的應用潛力。六、石墨烯的未來發(fā)展趨勢石墨烯作為一種革命性的二維碳材料,自其被發(fā)現(xiàn)以來,便在科學界與工業(yè)界引起了廣泛的關(guān)注。隨著研究的深入和技術(shù)的進步,石墨烯在多個領(lǐng)域展現(xiàn)出了巨大的應用潛力。展望未來,石墨烯的發(fā)展將呈現(xiàn)以下趨勢:產(chǎn)業(yè)化進程的加速:隨著制備技術(shù)的不斷成熟,石墨烯的生產(chǎn)成本將逐漸降低,從而推動其在大規(guī)模工業(yè)化應用中的普及。預計未來幾年內(nèi),將出現(xiàn)更多以石墨烯為基礎(chǔ)的新型材料和產(chǎn)品,如石墨烯電池、石墨烯觸摸屏等。多功能復合材料的開發(fā):石墨烯的優(yōu)異性能使其成為一種理想的多功能復合材料添加劑。通過將石墨烯與其他材料結(jié)合,可以制備出具有多種功能的復合材料,如增強力學性能、提高導電導熱性能等。這種復合材料將在航空航天、汽車制造等領(lǐng)域發(fā)揮重要作用。能源領(lǐng)域的應用拓展:石墨烯在能源領(lǐng)域的應用前景廣闊。例如,石墨烯可以作為高效的電極材料用于鋰離子電池和超級電容器,提高能源存儲和轉(zhuǎn)換效率。石墨烯還可以應用于太陽能電池、燃料電池等領(lǐng)域,為新能源技術(shù)的發(fā)展提供有力支持。生物醫(yī)學領(lǐng)域的應用探索:石墨烯的生物相容性和獨特性能使其在生物醫(yī)學領(lǐng)域具有巨大的應用潛力。未來,石墨烯可能被用于藥物載體、生物傳感器、組織工程等領(lǐng)域,為生物醫(yī)學研究和臨床應用提供新的手段。環(huán)境治理與保護:石墨烯在環(huán)境治理與保護方面也展現(xiàn)出獨特的優(yōu)勢。例如,石墨烯可以用于制備高效的污水處理材料,去除水中的重金屬離子和有機污染物。石墨烯還可以應用于大氣污染治理、土壤修復等領(lǐng)域,為環(huán)境保護提供新的解決方案。石墨烯作為一種前沿的二維碳材料,其未來發(fā)展趨勢將涉及多個領(lǐng)域,并有望為科技進步和社會發(fā)展帶來深遠的影響。隨著研究的深入和技術(shù)的進步,我們有理由相信石墨烯將在未來發(fā)揮更加重要的作用。七、結(jié)論石墨烯,作為一種獨特的二維碳材料,自其被發(fā)現(xiàn)以來,便在科學界和工業(yè)界引起了廣泛的關(guān)注和研究熱潮。其優(yōu)異的物理、化學和機械性能使得石墨烯在能源、電子、生物醫(yī)學等多個領(lǐng)域具有巨大的應用潛力。隨著研究的深入,石墨烯的制備方法日益多樣化,從最初的機械剝離法到化學氣相沉積法,再到近年來興起的液相剝離法,制備效率和質(zhì)量得到了顯著的提升。同時,石墨烯的改性研究也取得了重要的進展,通過化學修飾、摻雜等手段,石墨烯的性能得到了進一步的優(yōu)化和拓展。在應用方面,石墨烯在電子器件、能源存儲與轉(zhuǎn)換、生物醫(yī)學等領(lǐng)域的應用研究取得了顯著的成果。特別是在新能源領(lǐng)域,石墨烯的高導電性、高比表面積和優(yōu)異的熱性能使其成為理想的電極材料和儲能材料。然而,盡管石墨烯的研究取得了長足的進步,但仍面臨著許多挑戰(zhàn)和問題。例如,石墨烯的大規(guī)模制備仍然面臨成本和技術(shù)上的難題;石墨烯的分散性和穩(wěn)定性問題也限制了其在某些領(lǐng)域的應用;石墨烯的毒性和生物相容性等問題也需要進一步的研究和評估。二維碳材料石墨烯的研究進展迅速,但仍需解決諸多關(guān)鍵問題。隨著科學技術(shù)的不斷發(fā)展,相信石墨烯的應用前景將更加廣闊,其在各個領(lǐng)域的作用也將更加凸顯。參考資料:石墨烯(Graphene)是碳的同素異形體,碳原子以sp2雜化鍵合形成單層六邊形蜂窩晶格石墨烯。利用石墨烯這種晶體結(jié)構(gòu)可以構(gòu)建富勒烯(C60)、石墨烯量子點,碳納米管、納米帶、多壁碳納米管和納米角。堆疊在一起的石墨烯層(大于10層)即形成石墨,層間通過范德華力保持在一起,晶面間距335納米。石墨烯具有優(yōu)異的光學、電學、力學特性,在材料學、微納加工、能源、生物醫(yī)學和藥物傳遞等方面具有重要的應用前景,被認為是一種未來革命性的材料。英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,由于成功從石墨中分離出石墨烯(2004)并在單層和雙層石墨烯體系中分別發(fā)現(xiàn)了整數(shù)量子霍爾效應及常溫條件下的量子霍爾效應(2009),而獲得2010年度諾貝爾物理學獎。實際上石墨烯本來就存在于自然界,只是難以剝離出單層結(jié)構(gòu)。石墨烯一層層疊起來就是石墨,厚1毫米的石墨大約包含300萬層石墨烯。鉛筆在紙上輕輕劃過,就留下好多層石墨烯形成的劃痕。2004年,英國曼徹斯特大學的兩位科學家安德烈·蓋姆(AndreGeim)和康斯坦丁·諾沃消洛夫(KonstantinNovoselov)發(fā)現(xiàn)他們能用一種非常簡單的方法得到越來越薄的石墨薄片。他們從高定向熱解石墨中剝離出石墨片,然后將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把石墨片一分為二。不斷地這樣操作,于是薄片越來越薄,他們得到了僅由一層碳原子構(gòu)成的薄片,這就是石墨烯。他們共同獲得2010年諾貝爾物理學獎,石墨烯常見的粉體生產(chǎn)的方法為機械剝離法、氧化還原法、SiC外延生長法,薄膜生產(chǎn)方法為化學氣相沉積法(CVD)。這以后,制備石墨烯的新方法層出不窮。2009年,安德烈·蓋姆和康斯坦丁·諾沃肖洛夫在單層和雙層石墨烯體系中分別發(fā)現(xiàn)了整數(shù)量子霍爾效應及常溫條件下的量子霍爾效應,他們也因此獲得2010年度諾貝爾物理學獎。在發(fā)現(xiàn)石墨烯以前,大多數(shù)物理學家認為,熱力學漲落不允許任何二維晶體在有限溫度下存在。所以,它的發(fā)現(xiàn)立即震撼了凝聚體物理學學術(shù)界。雖然理論和實驗界都認為完美的二維結(jié)構(gòu)無法在非絕對零度穩(wěn)定存在,但是單層石墨烯能夠在實驗中被制備出來。2018年3月31日,中國首條全自動量產(chǎn)石墨烯有機太陽能光電子器件生產(chǎn)線在山東菏澤啟動,該項目主要生產(chǎn)可在弱光下發(fā)電的石墨烯有機太陽能電池(下稱石墨烯OPV),破解了應用局限、對角度敏感、不易造型這三大太陽能發(fā)電難題。2018年6月27日,中國石墨烯產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟發(fā)布新制訂的團體標準《含有石墨烯材料的產(chǎn)品命名指南》。這項標準規(guī)定了石墨烯材料相關(guān)新產(chǎn)品的命名方法。2023年4月,英國曼徹斯特大學研究人員報告了在環(huán)境條件下石墨烯中出現(xiàn)的創(chuàng)紀錄的高磁阻:其在標準永磁體(約1000高斯,或1特斯拉)的磁場中磁阻率達到了100%以上。在磁場下能強烈改變電阻率的材料會被廣泛應用,例如每輛汽車和每臺計算機都包含的微型磁傳感器。2024年1月報道,日本科學家在南非一座地下金礦里,首次發(fā)現(xiàn)一塊32億年前的巖石內(nèi)天然形成的石墨烯。石墨烯內(nèi)部碳原子的排列方式與石墨單原子層一樣以sp2雜化軌道成鍵,并有如下的特點:碳原子有4個價電子,其中3個電子生成sp2鍵,即每個碳原子都貢獻一個位于pz軌道上的未成鍵電子,近鄰原子的pz軌道與平面成垂直方向可形成π鍵,新形成的π鍵呈半填滿狀態(tài)。研究證實,石墨烯中碳原子的配位數(shù)為3,每兩個相鄰碳原子間的鍵長為42×10-10米,鍵與鍵之間的夾角為120°。除了σ鍵與其他碳原子鏈接成六角環(huán)的蜂窩式層狀結(jié)構(gòu)外,每個碳原子的垂直于層平面的pz軌道可以形成貫穿全層的多原子的大π鍵(與苯環(huán)類似),因而具有優(yōu)良的導電和光學性能。石墨烯是已知強度最高的材料之一,同時還具有很好的韌性,且可以彎曲,石墨烯的理論楊氏模量達0TPa,固有的拉伸強度為130GPa。而利用氫等離子改性的還原石墨烯也具有非常好的強度,平均模量可達25TPa。由石墨烯薄片組成的石墨紙擁有很多的孔,因而石墨紙顯得很脆,然而,經(jīng)氧化得到功能化石墨烯,再由功能化石墨烯做成石墨紙則會異常堅固強韌。石墨烯在室溫下的載流子遷移率約為15000cm2/(V·s),這一數(shù)值超過了硅材料的10倍,是已知載流子遷移率最高的物質(zhì)銻化銦(InSb)的兩倍以上。在某些特定條件下如低溫下,石墨烯的載流子遷移率甚至可高達250000cm2/(V·s)。與很多材料不一樣,石墨烯的電子遷移率受溫度變化的影響較小,50~500K之間的任何溫度下,單層石墨烯的電子遷移率都在15000cm2/(V·s)左右。另外,石墨烯中電子載體和空穴載流子的半整數(shù)量子霍爾效應可以通過電場作用改變化學勢而被觀察到,而科學家在室溫條件下就觀察到了石墨烯的這種量子霍爾效應。石墨烯中的載流子遵循一種特殊的量子隧道效應,在碰到雜質(zhì)時不會產(chǎn)生背散射,這是石墨烯局域超強導電性以及很高的載流子遷移率的原因。石墨烯中的電子和光子均沒有靜止質(zhì)量,他們的速度是和動能沒有關(guān)系的常數(shù)。石墨烯是一種零距離半導體,因為它的傳導和價帶在狄拉克點相遇。在狄拉克點的六個位置動量空間的邊緣布里淵區(qū)分為兩組等效的三份。相比之下,傳統(tǒng)半導體的主要點通常為Γ,動量為零。石墨烯具有非常好的熱傳導性能。純的無缺陷的單層石墨烯的導熱系數(shù)高達5300W/mK,高于單壁碳納米管(3500W/mK)和多壁碳納米管(3000W/mK)。當它作為載體時,導熱系數(shù)也可達600W/mK。石墨烯的彈道熱導率可以使單位圓周和長度的碳納米管的彈道熱導率的下限下移。石墨烯具有非常良好的光學特性,在較寬波長范圍內(nèi)吸收率約為3%,看上去幾乎是透明的。在幾層石墨烯厚度范圍內(nèi),厚度每增加一層,吸收率增加3%。大面積的石墨烯薄膜同樣具有優(yōu)異的光學特性,且其光學特性隨石墨烯厚度的改變而發(fā)生變化。這是單層石墨烯所具有的不尋常低能電子結(jié)構(gòu)。室溫下對雙柵極雙層石墨烯場效應晶體管施加電壓,石墨烯的帶隙可在0~25eV間調(diào)整。施加磁場,石墨烯納米帶的光學響應可調(diào)諧至太赫茲范圍。當入射光的強度超過某一臨界值時,石墨烯對其的吸收會達到飽和。這些特性可以使得石墨烯可以用來做被動鎖模激光器。這種獨特的吸收可能成為飽和時輸入光強超過一個閾值,這稱為飽和影響,石墨烯可飽和容易下可見強有力的激勵近紅外地區(qū),由于環(huán)球光學吸收和零帶隙。由于這種特殊性質(zhì),石墨烯具有廣泛應用在超快光子學。石墨烯/氧化石墨烯層的光學響應可以調(diào)諧電。更密集的激光照明下,石墨烯可能擁有一個非線性相移的光學非線性克爾效應。石墨烯的基本化學性質(zhì)與石墨類似,其最基本的化學鍵也是碳碳雙鍵,但石墨烯具有單層六邊形蜂窩結(jié)構(gòu),并含有邊界基團和平面缺陷。這使得石墨烯具有與石墨不同的化學性質(zhì):石墨烯可以吸附并脫附各種原子和分子。當這些原子或分子作為給體或受體時可以改變石墨烯載流子的濃度,而石墨烯本身卻可以保持很好的導電性。但當吸附其他物質(zhì)時,如H+和OH-時,會產(chǎn)生一些衍生物,使石墨烯的導電性變差,但并沒有產(chǎn)生新的化合物。因此,可以利用石墨來推測石墨烯的性質(zhì)。例如石墨烷的生成就是在二維石墨烯的基礎(chǔ)上,每個碳原子多加上一個氫原子,從而使石墨烯中sp2碳原子變成sp3雜化??梢栽趯嶒炇抑型ㄟ^化學改性的石墨制備的石墨烯的可溶性片段。氧化石墨烯(grapheneoxide,GO):一種通過氧化石墨得到的層狀材料。體相石墨經(jīng)發(fā)煙濃酸溶液處理后,石墨烯層被氧化成親水的石墨烯氧化物,石墨層間距由氧化前的35?增加到7~10?,經(jīng)加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結(jié)構(gòu)。PS、紅外光譜(IR)、固體核磁共振譜(NMR)等表征結(jié)果顯示石墨烯氧化物含有大量的含氧官能團,包括羥基、環(huán)氧官能團、羰基、羧基等。羥基和環(huán)氧官能團主要位于石墨的基面上,而羰基和羧基則處在石墨烯的邊緣處。石墨烷(graphane):可通過石墨烯與氫氣反應得到,是一種飽和的碳氫化合物,具有分子式(CH)n,其中所有的碳是sp3雜化并形成六角網(wǎng)絡結(jié)構(gòu),氫原子以交替形式從石墨烯平面的兩端與碳成鍵,石墨烷表現(xiàn)出半導體性質(zhì),具有直接帶隙。氮摻雜石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后變成氮摻雜的石墨烯,生成的氮摻雜石墨烯表現(xiàn)出較純石墨烯更多優(yōu)異的性能,呈無序、透明、褶皺的薄紗狀,部分薄片層疊在一起,形成多層結(jié)構(gòu),顯示出較高的比電容和良好的循環(huán)壽命。生物相容性:羧基離子的植入可使石墨烯材料表面具有活性功能團,從而大幅度提高材料的細胞和生物反應活性。石墨烯呈薄紗狀與碳納米管的管狀相比,更適合于生物材料方面的研究。并且石墨烯的邊緣與碳納米管相比,更長,更易于被摻雜以及化學改性,更易于接受功能團。還原性:可在空氣中或是被氧化性酸氧化,通過該方法可以將石墨烯裁成小碎片。石墨烯氧化物是通過石墨氧化得到的層狀材料,經(jīng)加熱或在水中超聲剝離過程很容易形成分離的石墨烯氧化物片層結(jié)構(gòu)。加成反應:利用石墨烯上的雙鍵,可以通過加成反應,加入需要的基團。穩(wěn)定性:石墨烯的結(jié)構(gòu)非常穩(wěn)定,碳碳鍵(carbon-carbonbond)僅為42。石墨烯內(nèi)部的碳原子之間的連接很柔韌,當施加外力于石墨烯時,碳原子面會彎曲變形,使得碳原子不必重新排列來適應外力,從而保持結(jié)構(gòu)穩(wěn)定。這種穩(wěn)定的晶格結(jié)構(gòu)使石墨烯具有優(yōu)秀的導熱性。另外,石墨烯中的電子在軌道中移動時,不會因晶格缺陷或引入外來原子而發(fā)生散射。由于原子間作用力十分強,在常溫下,即使周圍碳原子發(fā)生擠撞,石墨烯內(nèi)部電子受到的干擾也非常小。同時,石墨烯有芳香性,具有芳烴的性質(zhì)。機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結(jié)構(gòu)。2004年,英國兩位科學家使用透明膠帶對天然石墨進行層層剝離取得石墨烯的方法,也歸為機械剝離法,這種方法一度被認為生產(chǎn)效率低,無法工業(yè)化量產(chǎn)。這種方法可以制備微米大小的石墨烯,但是其可控性較低,實現(xiàn)大規(guī)模合成有一定的困難。2016年,中國科學家發(fā)明了一種簡單高效的綠色剝離技術(shù),通過“球-微球”間柔和的滾動轉(zhuǎn)移工藝實現(xiàn)了少層石墨烯(層數(shù)8±9)的規(guī)模化制備。氧化還原法是通過使用硫酸、硝酸等化學試劑及高錳酸鉀、雙氧水等氧化劑將天然石墨氧化,增大石墨層之間的間距,在石墨層與層之間插入氧化物,制得氧化石墨(GraphiteOxide)。然后將反應物進行水洗,并對洗凈后的固體進行低溫干燥,制得氧化石墨粉體。通過物理剝離、高溫膨脹等方法對氧化石墨粉體進行剝離,制得氧化石墨烯。最后通過化學法將氧化石墨烯還原,得到石墨烯(RGO)。這種方法操作簡單,產(chǎn)量高,但是產(chǎn)品質(zhì)量較低。氧化還原法使用硫酸、硝酸等強酸,存在較大的危險性,又須使用大量的水進行清洗,帶來較大的環(huán)境污染。使用氧化還原法制備的石墨烯,含有較豐富的含氧官能團,易于改性。但由于在對氧化石墨烯進行還原時,較難控制還原后石墨烯的氧含量,同時氧化石墨烯在陽光照射、運輸時車廂內(nèi)高溫等外界每件影響下會不斷的還原,因此氧化還原法生產(chǎn)的石墨烯逐批產(chǎn)品的品質(zhì)往往不一致,難以控制品質(zhì)。取向附生法是利用生長基質(zhì)原子結(jié)構(gòu)“種”出石墨烯,首先讓碳原子在1150℃下滲入釕,然后冷卻,冷卻到850℃后,之前吸收的大量碳原子就會浮到釕表面,最終鏡片形狀的單層的碳原子會長成完整的一層石墨烯。第一層覆蓋后,第二層開始生長。底層的石墨烯會與釕產(chǎn)生強烈的相互作用,而第二層后就幾乎與釕完全分離,只剩下弱電耦合。但采用這種方法生產(chǎn)的石墨烯薄片往往厚度不均勻,且石墨烯和基質(zhì)之間的黏合會影響碳層的特性。SiC外延法是通過在超高真空的高溫環(huán)境下,使硅原子升華脫離材料,剩下的C原子通過自組形式重構(gòu),從而得到基于SiC襯底的石墨烯。這種方法可以獲得高質(zhì)量的石墨烯,但是這種方法對設(shè)備要求較高。通過Hummer法制備氧化石墨;將氧化石墨放入水中超聲分散,形成均勻分散、質(zhì)量濃度為25g/L~1g/L的氧化石墨烯溶液,再向所述的氧化石墨烯溶液中滴加質(zhì)量濃度為28%的氨水;將還原劑溶于水中,形成質(zhì)量濃度為25g/L~2g/L的水溶液;將配制的氧化石墨烯溶液和還原劑水溶液混合均勻,將所得混合溶液置于油浴條件下攪拌,反應完畢后,將混合物過濾洗滌、烘干后得到石墨烯。化學氣相沉積法即(CVD)是使用含碳有機氣體為原料進行氣相沉積制得石墨烯薄膜的方法。這是生產(chǎn)石墨烯薄膜最有效的方法。這種方法制備的石墨烯具有面積大和質(zhì)量高的特點,但現(xiàn)階段成本較高,工藝條件還需進一步完善。由于石墨烯薄膜的厚度很薄,因此大面積的石墨烯薄膜無法單獨使用,必須附著在宏觀器件中才有使用價值,例如觸摸屏、加熱器件等。低壓氣相沉積法是部分學者使用的,其將單層石墨烯在Ir表面上生成,通過進一步研究可知,這種石墨烯結(jié)構(gòu)可以跨越金屬臺階,連續(xù)性的和微米尺度的單層碳結(jié)構(gòu)逐漸在Ir表面上形成。毫米量級的單晶石墨烯是利用表面偏析的方法得到的。厘米量級的石墨烯和在多晶Ni薄膜上外延生長石墨烯是由部分學者發(fā)現(xiàn)的,在1000℃下加熱300納米厚的Ni膜表面,同時在CH4氣氛中進行暴露,經(jīng)過一段時間的反應后,大面積的少數(shù)層石墨烯薄膜會在金屬表面形成。隨著批量化生產(chǎn)以及大尺寸等難題的逐步突破,石墨烯的產(chǎn)業(yè)化應用步伐正在加快,基于已有的研究成果,最先實現(xiàn)商業(yè)化應用的領(lǐng)域可能會是移動設(shè)備、航空航天、新能源電池領(lǐng)域。石墨烯對物理學基礎(chǔ)研究有著特殊意義,它使得一些此前只能在理論上進行論證的量子效應可以通過實驗經(jīng)行驗證。在二維的石墨烯中,電子的質(zhì)量仿佛是不存在的,這種性質(zhì)使石墨烯成為了一種罕見的可用于研究相對論量子力學的凝聚態(tài)物質(zhì)——因為無質(zhì)量的粒子必須以光速運動,從而必須用相對論量子力學來描述,這為理論物理學家們提供了一個嶄新的研究方向:一些原來需要在巨型粒子加速器中進行的試驗,可以在小型實驗室內(nèi)用石墨烯進行。零能隙的半導體主要是單層石墨烯,這種電子結(jié)構(gòu)會嚴重影響到氣體分子在其表面上的作用。單層石墨烯較體相石墨表面反應活性增強的功能是由石墨烯的氫化反應和氧化反應結(jié)果顯示出來的,說明石墨烯的電子結(jié)構(gòu)可以調(diào)變其表面的活性。另外,石墨烯的電子結(jié)構(gòu)可以通過氣體分子吸附的誘導而發(fā)生相應的變化,其不但對載流子的濃度進行改變,同時可以摻雜不同的石墨烯。石墨烯可以做成化學傳感器,這個過程主要是通過石墨烯的表面吸附性能來完成的,根據(jù)部分學者的研究可知,石墨烯化學探測器的靈敏度可以與單分子檢測的極限相比擬。石墨烯獨特的二維結(jié)構(gòu)使它對周圍的環(huán)境非常敏感。石墨烯是電化學生物傳感器的理想材料,石墨烯制成的傳感器在醫(yī)學上檢測多巴胺、葡萄糖等具有良好的靈敏性。石墨烯可以用來制作晶體管,由于石墨烯結(jié)構(gòu)的高度穩(wěn)定性,這種晶體管在接近單個原子的尺度上依然能穩(wěn)定地工作。相比之下,目前以硅為材料的晶體管在10納米左右的尺度上就會失去穩(wěn)定性;石墨烯中電子對外場的反應速度超快這一特點,又使得由它制成的晶體管可以達到極高的工作頻率。例如IBM公司在2010年2月就已宣布將石墨烯晶體管的工作頻率提高到了100GHz,超過同等尺度的硅晶體管。消費電子展上可彎曲屏幕備受矚目,成為未來移動設(shè)備顯示屏的發(fā)展趨勢。柔性顯示未來市場廣闊,作為基礎(chǔ)材料的石墨烯前景也被看好。韓國研究人員首次制造出了由多層石墨烯和玻璃纖維聚酯片基底組成的柔性透明顯示屏。韓國三星公司和成均館大學的研究人員在一個63厘米寬的柔性透明玻璃纖維聚酯板上,制造出了一塊電視機大小的純石墨烯。他們表示,這是迄今為止“塊頭”最大的石墨烯塊。隨后,他們用該石墨烯塊制造出了一塊柔性觸摸屏。研究人員表示,從理論上來講,人們可以卷起智能手機,然后像鉛筆一樣將其別在耳后。新能源電池也是石墨烯最早商用的一大重要領(lǐng)域。美國麻省理工學院已成功研制出表面附有石墨烯納米涂層的柔性光伏電池板,可極大降低制造透明可變形太陽能電池的成本,這種電池有可能在夜視鏡、相機等小型數(shù)碼設(shè)備中應用。另外,石墨烯超級電池的成功研發(fā),也解決了新能源汽車電池的容量不足以及充電時間長的問題,極大加速了新能源電池產(chǎn)業(yè)的發(fā)展。這一系列的研究成果為石墨烯在新能源電池行業(yè)的應用鋪就了道路。石墨烯過濾器比其他海水淡化技術(shù)要使用的多。水環(huán)境中的氧化石墨烯薄膜與水親密接觸后,可形成約9納米寬的通道,小于這一尺寸的離子或分子可以快速通過。通過機械手段進一步壓縮石墨烯薄膜中的毛細通道尺寸,控制孔徑大小,能高效過濾海水中的鹽份。石墨烯具有質(zhì)量輕、高化學穩(wěn)定性和高比表面積等優(yōu)點,使之成為儲氫材料的最佳候選者。由于高導電性、高強度、超輕薄等特性,石墨烯在航天軍工領(lǐng)域的應用優(yōu)勢也是極為突出的。2014年,美國NASA開發(fā)出應用于航天領(lǐng)域的石墨烯傳感器,就能很好的對地球高空大氣層的微量元素、航天器上的結(jié)構(gòu)性缺陷等進行檢測。而石墨烯在超輕型飛機材料等潛在應用上也將發(fā)揮更重要的作用。以石墨烯作為感光元件材質(zhì)的新型感光元件,可望透過特殊結(jié)構(gòu),讓感光能力比現(xiàn)有CMOS或CCD提高上千倍,而且損耗的能源也僅需原本10%??蓱迷诒O(jiān)視器與衛(wèi)星成像領(lǐng)域中,可以應用于照相機、智能手機等。基于石墨烯的復合材料是石墨烯應用領(lǐng)域中的重要研究方向,其在能量儲存、液晶器件、電子器件、生物材料、傳感材料和催化劑載體等領(lǐng)域展現(xiàn)出了優(yōu)良性能,具有廣闊的應用前景。目前石墨烯復合材料的研究主要集中在石墨烯聚合物復合材料和石墨烯基無機納米復合材料上,而隨著對石墨烯研究的深入,石墨烯增強體在塊體金屬基復合材料中的應用也越來越受到人們的重視。石墨烯制成的多功能聚合物復合材料、高強度多孔陶瓷材料,增強了復合材料的許多特殊性能。石墨烯被用來加速人類骨髓間充質(zhì)干細胞的成骨分化,同時也被用來制造碳化硅上外延石墨烯的生物傳感器。同時石墨烯可以作為一個神經(jīng)接口電極,而不會改變或破壞性能,如信號強度或疤痕組織的形成。由于具有柔韌性、生物相容性和導電性等特性,石墨烯電極在體內(nèi)比鎢或硅電極穩(wěn)定得多。石墨烯氧化物對于抑制大腸桿菌的生長十分有效,而且不會傷害到人體細胞。在干燥環(huán)境下,石墨的典型摩擦系數(shù)在5-6之間,磨損率為10-4mm3/(mN),而石墨烯的典型摩擦系數(shù)在15-2之間,磨損率小于10-9mm3/(mN)。在潮濕環(huán)境下,石墨的典型摩擦系數(shù)在1-2之間,磨損率為10-7mm3/(mN),而石墨烯的典型摩擦系數(shù)在15-2之間,磨損率小于10-9mm3/(mN)。這意味著石墨烯作為鋼質(zhì)工件的保護層時,摩擦力比粉狀石墨減少了4-5倍,磨損量降低了4個數(shù)量級。因此石墨烯可以完全替代已經(jīng)廣泛添加到齒輪和軸承的潤滑油的粉狀石墨,以降低工作過程中傳動系統(tǒng)的摩擦力,減少磨損,增強摩擦和磨損控制保護涂層的性能。石墨烯的研究與應用開發(fā)持續(xù)升溫,石墨和石墨烯有關(guān)的材料廣泛應用在電池電極材料、半導體器件、透明顯示屏、傳感器、電容器、晶體管等方面。鑒于石墨烯材料優(yōu)異的性能及其潛在的應用價值,在化學、材料、物理、生物、環(huán)境、能源等眾多學科領(lǐng)域已取得了一系列重要進展。研究者們致力于在不同領(lǐng)域嘗試不同方法以求制備高質(zhì)量、大面積石墨烯材料。并通過對石墨烯制備工藝的不斷優(yōu)化和改進,降低石墨烯制備成本使其優(yōu)異的材料性能得到更廣泛的應用,并逐步走向產(chǎn)業(yè)化。中國在石墨烯研究上也具有獨特的優(yōu)勢,從生產(chǎn)角度看,作為石墨烯生產(chǎn)原料的石墨,在我國儲能豐富,價格低廉。正是看到了石墨烯的應用前景,許多國家紛紛建立石墨烯相關(guān)技術(shù)研發(fā)中心,嘗試使用石墨烯商業(yè)化,進而在工業(yè)、技術(shù)和電子相關(guān)領(lǐng)域獲得潛在的應用專利。如歐盟委員會將石墨烯作為“未來新興旗艦技術(shù)項目”,設(shè)立專項研發(fā)計劃,未來10年內(nèi)撥出10億歐元經(jīng)費。英國政府也投資建立國家石墨烯研究所(NGI),力圖使這種材料在未來幾十年里可以從實驗室進入生產(chǎn)線和市場。石墨烯有望在諸多應用領(lǐng)域中成為新一代器件,為了探尋石墨烯更廣闊的應用領(lǐng)域,還需繼續(xù)尋求更為優(yōu)異的石墨烯制備工藝,使其得到更好的應用。石墨烯雖然從合成和證實存在到今天只有短短十幾年的時間,但是已成為今年學者研究的熱點。其優(yōu)異的光學、電學、力學、熱學性質(zhì)促使研究人員不斷對其深入研究,隨著石墨烯的制備方法不斷被開發(fā),石墨烯必將在不久的將來被更廣泛地應用到各領(lǐng)域中。石墨烯產(chǎn)業(yè)化還處于初期階段,一些應用還不足以體現(xiàn)出石墨烯的多種“理想”性能,而世界上很多科研人員正在探索“殺手锏級”的應用,未來在檢測及認證方面需要面對太多挑戰(zhàn),有待在手段及方法上不斷創(chuàng)新。石墨烯是一種由碳原子組成的二維材料,因其具有良好的導電性、熱導率和機械強度而受到廣泛。近年來,石墨烯基二維材料在防腐涂料領(lǐng)域的應用逐漸成為研究熱點。防腐涂料是一種用于防止金屬表面腐蝕的涂層材料,而石墨烯基二維材料的引入可以顯著提高涂層的防腐性能。隨著環(huán)境保護和節(jié)能意識的不斷提高,對防腐涂料的需求逐漸向高效、環(huán)保、節(jié)能方向發(fā)展。石墨烯基二維材料改性防腐涂料作為一種新型的環(huán)保型防腐涂料,具有廣闊的市場前景。目前,國內(nèi)外研究者已紛紛開展相關(guān)研究,并取得了一定的成果。配方設(shè)計:根據(jù)涂層的性能要求,設(shè)計合理的石墨烯基二維材料添加量,選擇合適的防腐添加劑、粘結(jié)劑、溶劑等成分。工藝路線:確定石墨烯基二維材料的制備方法,研究其對涂層性能的影響;探討涂層的制備工藝,包括預處理、涂布、干燥、固化等環(huán)節(jié)。實驗實施:按照設(shè)計好的配方和工藝路線進行實驗,對涂層的物理性能、化學性能、耐候性、耐腐蝕性等進行檢測和分析。近年來,石墨烯基二維材料改性防腐涂料的研究取得了一系列成果。具體包括:提高了涂層的防腐性能:通過在防腐涂料中添加石墨烯基二維材料,可以提高涂層的耐腐蝕性,延長金屬表面的使用壽命。增強了涂層的附著力:石墨烯基二維材料的片層結(jié)構(gòu)可以增強涂層與金屬表面的附著力,有效防止腐蝕介質(zhì)滲透。改善了涂層的導熱性能:石墨烯具有優(yōu)良的導熱性能,可以有效地將金屬表面的熱量散發(fā)出去,降低金屬表面的溫度,減少腐蝕反應的發(fā)生。降低了涂層的成本:石墨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論