




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
試卷第=page22頁,共=sectionpages22頁資料整理【淘寶店鋪:向陽百分百】試卷第=page11頁,共=sectionpages11頁資料整理【淘寶店鋪:向陽百分百】中考數(shù)學(xué)幾何專項(xiàng)練習(xí):將軍飲馬一、一動(dòng)點(diǎn)1.如圖,正方形SKIPIF1<0的邊長為8,M在SKIPIF1<0上,且SKIPIF1<0,N是SKIPIF1<0上的一動(dòng)點(diǎn),則SKIPIF1<0的最小值為.
【答案】10【分析】要求SKIPIF1<0的最小值,SKIPIF1<0,SKIPIF1<0不能直接求,可考慮通過作輔助線轉(zhuǎn)化SKIPIF1<0,SKIPIF1<0的值,確定最小值為SKIPIF1<0的長度,再由勾股定理計(jì)算即可.【詳解】解:如圖所示,∵正方形是軸對稱圖形,點(diǎn)B與點(diǎn)D是關(guān)于直線SKIPIF1<0為對稱軸的對稱點(diǎn),∴連接SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0即為SKIPIF1<0的垂直平分線,
∴SKIPIF1<0,∴SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)P,∵點(diǎn)N為SKIPIF1<0上的動(dòng)點(diǎn),∴由三角形兩邊之和大于第三邊,知當(dāng)點(diǎn)N運(yùn)動(dòng)到點(diǎn)P時(shí),SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0的長度.∵四邊形SKIPIF1<0為正方形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的最小值為10.故答案為:10【點(diǎn)睛】本考查正方形的性質(zhì)和軸對稱及勾股定理等知識(shí)的綜合應(yīng)用,解題的難點(diǎn)在于確定滿足條件的點(diǎn)N的位置:利用軸對稱的方法.然后熟練運(yùn)用勾股定理.2.如圖,菱形草地SKIPIF1<0中,沿對角線修建60米和80米兩條道路SKIPIF1<0,M、N分別是草地邊SKIPIF1<0、SKIPIF1<0的中點(diǎn),在線段BD上有一個(gè)流動(dòng)飲水點(diǎn)SKIPIF1<0,若要使SKIPIF1<0的距離最短,則最短距離是米.【答案】50【分析】作SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0點(diǎn)與SKIPIF1<0重合時(shí),SKIPIF1<0的值最小,根據(jù)菱形的性質(zhì)和勾股定理求出SKIPIF1<0長,即可得出答案.【詳解】解:作SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0點(diǎn)與SKIPIF1<0重合時(shí),SKIPIF1<0的值最小,SKIPIF1<0四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0為SKIPIF1<0中點(diǎn),四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為點(diǎn)SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是菱形,SKIPIF1<0,SKIPIF1<0米,SKIPIF1<0米,SKIPIF1<0米,SKIPIF1<0的最小值是50米.故答案為:50.【點(diǎn)睛】本題考查了軸對稱﹣?zhàn)疃搪肪€問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對稱找出SKIPIF1<0的位置.3.如圖,在等邊SKIPIF1<0中,SKIPIF1<0于SKIPIF1<0,SKIPIF1<0.點(diǎn)SKIPIF1<0分別為SKIPIF1<0上的兩個(gè)定點(diǎn)且SKIPIF1<0,點(diǎn)SKIPIF1<0為線段SKIPIF1<0上一動(dòng)點(diǎn),連接SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0.【答案】SKIPIF1<0【分析】如圖所示,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0,當(dāng)SKIPIF1<0在同一條直線上時(shí),有最小值,證明四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,由此即可求解.【詳解】解:如圖所示,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,∵SKIPIF1<0是等邊三角形,SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)SKIPIF1<0在SKIPIF1<0上,∴SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0在同一條直線上時(shí),有最小值,∵點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是等邊三角形,即SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查動(dòng)點(diǎn)與等邊三角形,對稱—最短路徑,平行四邊形的判定和性質(zhì)的綜合,理解并掌握等邊三角形得性質(zhì),對稱—最短路徑的計(jì)算方法,平行四邊形的判定和性質(zhì)是解題的關(guān)鍵.4.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0垂直平分SKIPIF1<0,點(diǎn)P為直線SKIPIF1<0上任意一點(diǎn),則SKIPIF1<0的最小值是.【答案】4【分析】由線段垂直平分線的性質(zhì)可得SKIPIF1<0,可得當(dāng)點(diǎn)A,P,C在一條直線上時(shí),SKIPIF1<0有最小值,最小值為SKIPIF1<0的長.【詳解】解:連接SKIPIF1<0.∵SKIPIF1<0是SKIPIF1<0的垂直平分線,∴SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)點(diǎn)A,P,C在一條直線上時(shí),SKIPIF1<0有最小值,最小值為SKIPIF1<0.故答案為:4.【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì),明確線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等是解題的關(guān)鍵.5.如圖,在周長為SKIPIF1<0的菱形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為對角線SKIPIF1<0上一動(dòng)點(diǎn),則SKIPIF1<0的最小值為.【答案】3【分析】作SKIPIF1<0點(diǎn)關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0,由兩點(diǎn)之間線段最短可知當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在一條直線上時(shí),SKIPIF1<0有最小值,然后求得SKIPIF1<0的長度即可.【詳解】解:作SKIPIF1<0點(diǎn)關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.SKIPIF1<0.由兩點(diǎn)之間線段最短可知:當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在一條直線上時(shí),SKIPIF1<0的值最小,此時(shí)SKIPIF1<0.SKIPIF1<0四邊形SKIPIF1<0為菱形,周長為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0.SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查的是菱形的性質(zhì)、軸對稱--路徑最短問題,明確當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0在一條直線上時(shí)SKIPIF1<0有最小值是解題的關(guān)鍵.6.如圖,直線SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸分別交于SKIPIF1<0和SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0分別為線段SKIPIF1<0、SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn),當(dāng)SKIPIF1<0的值最小時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為.【答案】SKIPIF1<0【分析】直線SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸分別交于SKIPIF1<0和SKIPIF1<0,可求出點(diǎn)SKIPIF1<0,SKIPIF1<0的坐標(biāo),點(diǎn)SKIPIF1<0、SKIPIF1<0分別為線段SKIPIF1<0、SKIPIF1<0的中點(diǎn),可求出點(diǎn)SKIPIF1<0、SKIPIF1<0的坐標(biāo),作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)就是所求點(diǎn)SKIPIF1<0的坐標(biāo).【詳解】解:直線SKIPIF1<0與SKIPIF1<0軸,SKIPIF1<0軸分別交于SKIPIF1<0和SKIPIF1<0,∴當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,∵點(diǎn)SKIPIF1<0、SKIPIF1<0分別為線段SKIPIF1<0、SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,如圖所示,過點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∴直線SKIPIF1<0的解析式為:SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查一次函數(shù)與最短線段的綜合,掌握對稱中最短線段的解題方法是解題的關(guān)鍵.7.如圖,等邊SKIPIF1<0中,SKIPIF1<0,點(diǎn)E為高SKIPIF1<0上的一動(dòng)點(diǎn),以SKIPIF1<0為邊作等邊SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的最小值為.【答案】SKIPIF1<0/30度SKIPIF1<0【分析】①SKIPIF1<0與SKIPIF1<0為等邊三角形,得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而證SKIPIF1<0,最后得到答案.②過點(diǎn)D作定直線CF的對稱點(diǎn)G,連CG,證出SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中垂線,得到SKIPIF1<0,SKIPIF1<0,再證SKIPIF1<0為直角三角形,利用勾股定理求出SKIPIF1<0,即可得到答案.【詳解】解:①∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是等邊三角形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中SKIPIF1<0∴SKIPIF1<0,得SKIPIF1<0;故答案為:SKIPIF1<0.②(將軍飲馬問題)過點(diǎn)D作定直線CF的對稱點(diǎn)G,連CG,∴SKIPIF1<0為等邊三角形,SKIPIF1<0為SKIPIF1<0的中垂線,SKIPIF1<0,∴SKIPIF1<0,連接SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0為直角三角形,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】此題考查了等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),將軍飲馬,線段垂直平分線的判定及性質(zhì),勾股定理等內(nèi)容,熟練運(yùn)用將軍飲馬是解題的關(guān)鍵,具有較強(qiáng)的綜合性.8.如果菱形有一條對角線等于它的邊長,那么稱此菱形為“完美菱形”.如圖,已知“完美菱形”SKIPIF1<0的邊長為4,SKIPIF1<0是它的較短對角線,點(diǎn)E,F(xiàn)分別是邊SKIPIF1<0,SKIPIF1<0上的兩個(gè)動(dòng)點(diǎn),且SKIPIF1<0,點(diǎn)G為SKIPIF1<0的中點(diǎn),點(diǎn)P為SKIPIF1<0邊上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】連接SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以求SKIPIF1<0的最小值只要求出SKIPIF1<0的最小值,然后減去1即可,再利用將軍飲馬模型構(gòu)造出SKIPIF1<0的最小值時(shí)的線段,利用勾股定理求出即可.【詳解】解:設(shè)SKIPIF1<0與SKIPIF1<0的交點(diǎn)為O,連接SKIPIF1<0,SKIPIF1<0,∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0的最小值為SKIPIF1<0,作點(diǎn)O關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于點(diǎn)H,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的最小值為SKIPIF1<0,∵四邊形SKIPIF1<0是菱形,SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0是“完美菱形”SKIPIF1<0的邊長為4,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0由對稱性和菱形的性質(zhì),知SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了菱形的性質(zhì),軸對稱性質(zhì),勾股定理,掌握等邊三角形的判定和性質(zhì)是解題關(guān)鍵.9.如圖,等邊SKIPIF1<0中,SKIPIF1<0,O是SKIPIF1<0上一點(diǎn),且SKIPIF1<0,點(diǎn)M為SKIPIF1<0邊上一動(dòng)點(diǎn),連接SKIPIF1<0,將線段SKIPIF1<0繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)SKIPIF1<0至SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0周長的最小值為.
【答案】SKIPIF1<0/SKIPIF1<0【分析】過點(diǎn)N作SKIPIF1<0于點(diǎn)D,過點(diǎn)O作SKIPIF1<0于點(diǎn)H,則SKIPIF1<0,證明SKIPIF1<0,可得SKIPIF1<0,從而得到點(diǎn)N的運(yùn)動(dòng)軌跡是直線,且該直線與直線SKIPIF1<0平行,在SKIPIF1<0的左側(cè),與SKIPIF1<0的距離是SKIPIF1<0,作點(diǎn)C關(guān)于該直線的對稱點(diǎn)E,連接SKIPIF1<0交該直線于N,即當(dāng)點(diǎn)B,N,E三點(diǎn)共線時(shí),SKIPIF1<0的周長最小,連接SKIPIF1<0交該直線于G,則SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,即可求解.【詳解】解:如圖,過點(diǎn)N作SKIPIF1<0于點(diǎn)D,過點(diǎn)O作SKIPIF1<0于點(diǎn)H,則SKIPIF1<0,
∵SKIPIF1<0為等邊三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,根據(jù)題意得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴點(diǎn)N的運(yùn)動(dòng)軌跡是直線,且該直線與直線SKIPIF1<0平行,在SKIPIF1<0的左側(cè),與SKIPIF1<0的距離是SKIPIF1<0,作點(diǎn)C關(guān)于該直線的對稱點(diǎn)E,連接SKIPIF1<0交該直線于N,即當(dāng)點(diǎn)B,N,E三點(diǎn)共線時(shí),SKIPIF1<0的周長最小,連接SKIPIF1<0交該直線于G,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴△ACN的周長的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),軸對稱,勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考填空題中的壓軸題.二、兩動(dòng)點(diǎn)10.如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是.【答案】SKIPIF1<0【詳解】解:作M關(guān)于OB的對稱點(diǎn)M',N關(guān)于OA的對稱點(diǎn)N',連接兩對稱點(diǎn)M'N',交OB、OA于P、Q.此時(shí)MP+PQ+QN有最小值,根據(jù)線段垂直平分線性質(zhì)和兩點(diǎn)之間線段最短,MP+PQ+QN=M'P+PQ+QN'=M'N',M'N'的長度就是所求的MP+PQ+QN的最小值.分別連接OM',ON',∠N'OA=∠AOB=30°,∠M'OB=∠AOB=30°,所以∠M'ON'=90o,所以三角形M'ON'是直角三角形,OM'=OM=1,ON'=ON=3,由勾股定理得M'N'為SKIPIF1<0.所以MP+PQ+QN的最小值是SKIPIF1<0.故答案是:SKIPIF1<0.11.如圖,SKIPIF1<0是SKIPIF1<0內(nèi)一定點(diǎn),點(diǎn)SKIPIF1<0,SKIPIF1<0分別在邊SKIPIF1<0,SKIPIF1<0上運(yùn)動(dòng),若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的周長的最小值為.【答案】3【分析】如圖,作P關(guān)于OA,OB的對稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質(zhì)可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關(guān)于OA,OB的對稱點(diǎn)C,D.連接OC,OD.則當(dāng)M,N是CD與OA,OB的交點(diǎn)時(shí),△PMN的周長最短,最短的值是CD的長.∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【點(diǎn)睛】此題主要考查軸對稱--最短路線問題,綜合運(yùn)用了等邊三角形的知識(shí).正確作出圖形,理解△PMN周長最小的條件是解題的關(guān)鍵.12.如圖,∠AOB=45°,角內(nèi)有一點(diǎn)P,PO=10,在角兩邊上有兩點(diǎn)Q、R(均不同于點(diǎn)O),則△PQR的周長最小值是;當(dāng)△PQR周長最小時(shí),∠QPR的度數(shù)=.【答案】10SKIPIF1<090°【詳解】思路引領(lǐng):根據(jù)軸對稱圖形的性質(zhì),作出P關(guān)于OA、OB的對稱點(diǎn)M、N,連接AB,根據(jù)兩點(diǎn)之間線段最短得到最小值線段,再構(gòu)造直角三角形,利用勾股定理求出MN的值即可.根據(jù)對稱的性質(zhì)求得∠OMN+∠ONM=∠OPQ+∠OPR,即可求得∠QPR的度數(shù).答案詳解:分別作P關(guān)于OA、OB的對稱點(diǎn)M、N.連接MN交OA、OB交于Q、R,則△PQR符合條件.連接OM、ON,則OM=ON=OP=10,∠MON=∠MOP+∠NOP=2∠AOB=2×45°=90°,故△MON為等腰直角三角形.∴MNSKIPIF1<010SKIPIF1<0.根據(jù)對稱的性質(zhì)得到∠OMN=∠OPQ,∠ONM=∠OPR,∴∠OMN+∠ONM=∠OPQ+∠OPR,∵△MON為等腰直角三角形,∴∠OMN+∠ONM=90°,∴∠OPQ+∠OPR=90°,即∠QPR=90°.故答案為10SKIPIF1<0,90°.13.如圖,點(diǎn)P是SKIPIF1<0內(nèi)任意一點(diǎn),SKIPIF1<0,點(diǎn)M和點(diǎn)N分別是射線SKIPIF1<0和射線SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,則SKIPIF1<0周長的最小值是.【答案】SKIPIF1<0【分析】分別作點(diǎn)P關(guān)于SKIPIF1<0的對稱點(diǎn)C、D,連接SKIPIF1<0,分別交SKIPIF1<0于點(diǎn)M、N,連接SKIPIF1<0,當(dāng)點(diǎn)M、N在SKIPIF1<0上時(shí),SKIPIF1<0的周長最?。驹斀狻拷猓悍謩e作點(diǎn)P關(guān)于SKIPIF1<0的對稱點(diǎn)C、D,連接SKIPIF1<0,分別交SKIPIF1<0于點(diǎn)M、N,連接SKIPIF1<0.∵點(diǎn)P關(guān)于SKIPIF1<0的對稱點(diǎn)為C,關(guān)于SKIPIF1<0的對稱點(diǎn)為D,∴SKIPIF1<0;∵點(diǎn)P關(guān)于SKIPIF1<0的對稱點(diǎn)為D,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0是等邊三角形,∴SKIPIF1<0.∴SKIPIF1<0的周長的最小值SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查最短路徑問題和等邊三角形的判定.作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D是解題的關(guān)鍵所在.14.如圖,正方形SKIPIF1<0中,點(diǎn)SKIPIF1<0是SKIPIF1<0邊上一定點(diǎn),點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是邊SKIPIF1<0、SKIPIF1<0、SKIPIF1<0上的動(dòng)點(diǎn),若SKIPIF1<0,則四邊形SKIPIF1<0的周長最小時(shí)SKIPIF1<0.
【答案】SKIPIF1<0【分析】如圖,作點(diǎn)G關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,四邊形SKIPIF1<0的周長最小,求出此時(shí)SKIPIF1<0即可.【詳解】解:如圖,作點(diǎn)G關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,四邊形SKIPIF1<0的周長最小,
由對稱的性質(zhì)知,SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時(shí)SKIPIF1<0值最?。煌砜傻茫篠KIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0四點(diǎn)點(diǎn)共線時(shí)SKIPIF1<0值最小;∵SKIPIF1<0,正方形SKIPIF1<0是正方形;∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由對稱的性質(zhì)知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0.∴SKIPIF1<0故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了軸對稱的性質(zhì),正方形性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理等知識(shí),利用作軸對稱圖形解決最值問題是解題關(guān)鍵.15.如圖,在邊長為8的正方形SKIPIF1<0中,點(diǎn)G是SKIPIF1<0邊的中點(diǎn),E、F分別是SKIPIF1<0和SKIPIF1<0邊上的點(diǎn),則四邊形SKIPIF1<0周長的最小值為.【答案】24【分析】作點(diǎn)G關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)B關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,根據(jù)對稱的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,再由SKIPIF1<0,SKIPIF1<0,可得當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0的周長有最小值,最小值為SKIPIF1<0,再利用勾股定理求得SKIPIF1<0,最后利用SKIPIF1<0即可求解.【詳解】解:如圖,作點(diǎn)G關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,作點(diǎn)B關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,
∴當(dāng)SKIPIF1<0時(shí),四邊形SKIPIF1<0的周長有最小值,最小值為SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0的周長的最小值為24,故答案為:24.【點(diǎn)睛】本題考查了正方形的性質(zhì)、軸對稱的性質(zhì)、勾股定理,三角形的三邊關(guān)系,熟練掌握軸對稱的性質(zhì),構(gòu)造三角形是解題的關(guān)鍵.三、平移變換16.如圖,在等腰直角SKIPIF1<0中,SKIPIF1<0,點(diǎn)D,E分別為SKIPIF1<0,SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0的值最小時(shí),SKIPIF1<0的長為.
【答案】SKIPIF1<0/SKIPIF1<0【分析】過點(diǎn)C作SKIPIF1<0,設(shè)SKIPIF1<0,利用勾股定理求得SKIPIF1<0,再根據(jù)等腰直角三角形的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,即欲求SKIPIF1<0的最小值,相當(dāng)于在x軸上尋找一點(diǎn)SKIPIF1<0,到點(diǎn)SKIPIF1<0,SKIPIF1<0的距離和的最小值,利用待定系數(shù)法求直線SKIPIF1<0的解析式,從而求得SKIPIF1<0,即可求解.【詳解】解:過點(diǎn)C作SKIPIF1<0,設(shè)SKIPIF1<0,如圖所示,
∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,欲求SKIPIF1<0的最小值,相當(dāng)于在x軸上尋找一點(diǎn)SKIPIF1<0,到點(diǎn)SKIPIF1<0,SKIPIF1<0的距離和的最小值,如圖,作點(diǎn)F關(guān)于x軸的對稱點(diǎn)SKIPIF1<0,當(dāng)E、P、SKIPIF1<0共線時(shí),SKIPIF1<0的值最小,此時(shí),設(shè)直線SKIPIF1<0的解析式為:SKIPIF1<0,得,SKIPIF1<0,解得:SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0的值最小,SKIPIF1<0的值為:SKIPIF1<0,
故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查等腰三角形的與性質(zhì)、兩點(diǎn)間的距離公式、用待定系數(shù)法求一次函數(shù)解析式、線段和的最值及勾股定理,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.17.如圖,四邊形SKIPIF1<0是平行四邊形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0、SKIPIF1<0是SKIPIF1<0邊上的動(dòng)點(diǎn),且SKIPIF1<0,則四邊形SKIPIF1<0周長的最小值為.
【答案】SKIPIF1<0【分析】根據(jù)題意,將點(diǎn)SKIPIF1<0沿SKIPIF1<0向右平移2個(gè)單位長度得到點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,在SKIPIF1<0上截取SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,此時(shí)四邊形SKIPIF1<0的周長為SKIPIF1<0,則當(dāng)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時(shí),四邊形SKIPIF1<0的周長最小,進(jìn)而計(jì)算即可得解.【詳解】如下圖,將點(diǎn)SKIPIF1<0沿SKIPIF1<0向右平移2個(gè)單位長度得到點(diǎn)SKIPIF1<0,作點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,連接SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,在SKIPIF1<0上截取SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,此時(shí)四邊形SKIPIF1<0的周長為SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線時(shí),四邊形SKIPIF1<0的周長最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0周長的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.
【點(diǎn)睛】本題主要考查了四邊形周長的最小值問題,涉及到含SKIPIF1<0的直角三角形的性質(zhì),勾股定理等,熟練掌握相關(guān)軸對稱作圖方法以及線段長的求解方法是解決本題的關(guān)鍵.18.如圖,O為矩形ABCD對角線AC,BD的交點(diǎn),AB=8,M,N是直線BC上的動(dòng)點(diǎn),且MN=2,則OM+ON的最小值是.【答案】SKIPIF1<0【分析】根據(jù)題意,過O作OH∥BC,且令OH=2,連接NH,作O點(diǎn)關(guān)于BC的對稱點(diǎn)K,連接OK,KH,則OM+ON=NH+ON=NH+NK≥HK,當(dāng)H、N、K三點(diǎn)共線的時(shí)候,OM+ON有最小值,最小值為HK的長.根據(jù)矩形性質(zhì)及圖形的對稱性,易知SKIPIF1<0,在SKIPIF1<0中,運(yùn)用勾股定理求得HK的長即可.【詳解】解:過O作OH∥BC,且令OH=2,連接NH,作O點(diǎn)關(guān)于BC的對稱點(diǎn)K,連接OK,KH,∵OH∥BC,OH=MN=2,∴四邊形OMNH是平行四邊形,∴OM=NH,∴OM+ON=NH+ON.∵O點(diǎn)關(guān)于BC的對稱點(diǎn)是點(diǎn)K,∴ON=NK,∴OM+ON=NH+ON=NH+NK,∵SKIPIF1<0,∴當(dāng)H、N、K三點(diǎn)共線的時(shí)候,OM+ON有最小值,最小值為HK的長.∵OH∥BC,O點(diǎn)關(guān)于BC的對稱點(diǎn)是點(diǎn)K,∴SKIPIF1<0.
∵O為矩形ABCD對角線AC,BD的交點(diǎn),O點(diǎn)關(guān)于BC的對稱點(diǎn)是點(diǎn)K,∴OK=AB=8.∵OH=2,SKIPIF1<0,∴SKIPIF1<0,∴OM+ON的最小值是SKIPIF1<0.【點(diǎn)睛】本題考查了最短路徑問題,矩形性質(zhì),勾股定理求直角三角形的邊長,其中熟練畫出OM+ON取最小值時(shí)所對應(yīng)的線段,是解題的關(guān)鍵.19.如圖,在邊長為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AD上的點(diǎn),連接EF,將四邊形ABEF沿EF折疊,點(diǎn)B的對應(yīng)點(diǎn)G恰好落在CD邊上,點(diǎn)A的對應(yīng)點(diǎn)為H,連接BH.則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】過點(diǎn)A作AI∥EF交BC于點(diǎn)I,連接BG,構(gòu)造Rt△ABI≌Rt△BCG,再延長BC至K,使CK=BC,連接GK,AG,AK,構(gòu)造△ABG≌△HGB,由全等三角形的性質(zhì),將SKIPIF1<0轉(zhuǎn)化為AG+GK,求出AG+GK的最小值.【詳解】解:如圖,過點(diǎn)A作AI∥EF交BC于點(diǎn)I,連接BG,由折疊可知BE=EG,∠BEF=∠GEF,∴EF⊥BG,∵AI∥EF,∴∠BAI+∠ABG=90°,∵∠CBG+∠ABG=90°,∴∠ABI=∠CBG,由正方形ABCD可得AB=BC,∠BAI=∠BCG=90°,∴Rt△ABI≌Rt△BCG,∴AI=BG,又∵AI∥EF,AF∥EI,∴四邊形AIEF是平行四邊形,∴EF=AI=BG,延長BC至K,使CK=BC,連接GK,AG,AK,∵∠DCB=90°,∴DC⊥BK,∴DC垂直平分BK,∴BG=KG,由翻折可知,AB=HG,∠ABG=∠HGB,∴△ABG≌△HGB,∴AG=BH,∴BH+EF=AG+KGSKIPIF1<0AK,∴當(dāng)A,G,K共線時(shí),BH+EF最小,最小值等于AK,∵AB=2,BK=2BC=4,∠ABK=90°,∴SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題重點(diǎn)考查正方形的性質(zhì)、全等三角形的判定與性質(zhì)、軸對稱的性質(zhì)、勾股定理等,解題關(guān)鍵是作輔助線構(gòu)造全等三角形和直角三角形.20.將兩個(gè)全等的等腰直角三角形紙片的斜邊重合,按如圖位置放置,其中∠A=∠BCD=90°,AB=AD=CB=CD=2,將△ABD沿射線BD平移,得到△EGF,連接EC,GC.則EC+GC的最小值為.【答案】SKIPIF1<0【分析】連接DE,直線AE,作點(diǎn)C關(guān)于直線AE的對稱點(diǎn)H,連接DH,先證明四邊形EGCD是平行四邊形,推出DE=CG,推出EC+GC=EC+ED=HE+ED≥DH,再證明四邊形ABCD為正方形,從而H、A、C三點(diǎn)共線,再用勾股定理求出HD即可.【詳解】解:如圖,連接DE,直線AE,作點(diǎn)C關(guān)于直線AE的對稱點(diǎn)H,連接DH,∵將△ABD沿射線BD平移,得到△EGF,∴GE=CD且GE∥CD,∴四邊形GEDC為平行四邊形,∴ED=CG,∴EC+GC=EC+ED=HE+ED≥DH,∵CH⊥AE,AE∥BD,∴CH⊥BD,∵∠BAD=∠BCD=90°,AB=AD=CB=CD=2,∴四邊形ABCD為正方形,∴AC⊥BD,∴H、A、C三點(diǎn)共線,記HC與BD相交于M,∴MD=SKIPIF1<0BD,HM=3AM=3MD,∵BD=SKIPIF1<0,∴HD=SKIPIF1<0,∴EC+GC的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查軸對稱-最短路徑問題,平行四邊形的判定和性質(zhì),正方形的判定與性質(zhì),勾股定理.解題的關(guān)鍵是連接DE,證明四邊形EGCD是平行四邊形,將EC+GC轉(zhuǎn)化成HE+ED.21.如圖,在矩形ABCD中,SKIPIF1<0,SKIPIF1<0,點(diǎn)P在邊AD上,點(diǎn)Q在邊BC上,且SKIPIF1<0,連接CP,QD,則SKIPIF1<0的最小值為.【答案】13【分析】連接BP,在BA的延長線上截取AE=AB=6,連接PE,CE,PC+QD=PC+PB,則PC+QD的最小值轉(zhuǎn)化為PC+PB的最小值,在BA的延長線上截取AE=AB=6,則PC+QD=PC+PB=PC+PE≥CE,根據(jù)勾股定理可得結(jié)果.【詳解】解:如圖,連接BP,在矩形ABCD中,ADSKIPIF1<0BC,AD=BC,∵AP=CQ,∴AD-AP=BC-CQ,∴DP=QB,DPSKIPIF1<0BQ,∴四邊形DPBQ是平行四邊形,∴PBSKIPIF1<0DQ,PB=DQ,則PC+QD=PC+PB,則PC+QD的最小值轉(zhuǎn)化為PC+PB的最小值,在BA的延長線上截取AE=AB=6,連接PE,∵PA⊥BE,∴PA是BE的垂直平分線,∴PB=PE,∴PC+PB=PC+PE,連接CE,則PC+QD=PC+PB=PC+PE≥CE,∵BE=2AB=12,BC=AD=5,∴CE=SKIPIF1<0=13.∴PC+PB的最小值為13.故答案為:13.【點(diǎn)睛】本題考查的是最短線路問題,矩形的性質(zhì),全等三角形的判定與性質(zhì),熟知兩點(diǎn)之間線段最短的知識(shí)是解答此題的關(guān)鍵.22.如圖,平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0是直線SKIPIF1<0上一動(dòng)點(diǎn),將點(diǎn)SKIPIF1<0向右平移1個(gè)單位得到點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】設(shè)D(-1,0),作D點(diǎn)關(guān)于直線SKIPIF1<0的對稱點(diǎn)E,連接OE,交直線于A,連接AD,ED,作ES⊥x軸于S,根據(jù)題意OE就是OB+CB的最小值,由直線的解析式求得F的坐標(biāo),進(jìn)而求得ED的長,從而求得OS和ES,然后根據(jù)勾股定理即可求得OE.【詳解】解:設(shè)D(-1,0),作D點(diǎn)關(guān)于直線SKIPIF1<0的對稱點(diǎn)E,連接OE,交直線于A,連接AD,ED,作ES⊥x軸于S,∵AB∥DC,且AB=OD=OC=1,∴四邊形ABOD和四邊形ABCO是平行四邊形,∴AD=OB,OA=BC,∴AD+OA=OB+BC,∵AE=AD,∴AE+OA=OB+BC,即OE=OB+BC,∴OB+CB的最小值為OE,由SKIPIF1<0可知∠AFO=30°,F(xiàn)(-4,0),∴FD=3,∠FDG=60°,∴DG=SKIPIF1<0DF=SKIPIF1<0,∴DE=2DG=3,∴ES=SKIPIF1<0DE=SKIPIF1<0,DS=SKIPIF1<0DE=SKIPIF1<0,∴OS=SKIPIF1<0,∴OE=SKIPIF1<0,∴OB+CB的最小值為SKIPIF1<0.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì),軸對稱-最短路線問題以及平行四邊形的性質(zhì)、勾股定理的應(yīng)用,證得OE是OB+CB的最小值是本題的關(guān)鍵.23.如圖,點(diǎn)D,E是SKIPIF1<0ABC內(nèi)的兩點(diǎn),且DESKIPIF1<0AB,連結(jié)AD,BE,CE.若AB=9SKIPIF1<0,DE=2SKIPIF1<0,BC=10,∠ABC=75°,則AD+BE+CE的最小值為.【答案】SKIPIF1<0【分析】過SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,將SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到△SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0交SKIPIF1<0延長線于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0都是等邊三角形,可判斷四邊形SKIPIF1<0是平行四邊形,由已知分別可求SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0共線時(shí),SKIPIF1<0有最小值為SKIPIF1<0的長,再由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0△SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0.【詳解】解:過SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,將SKIPIF1<0繞點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)SKIPIF1<0,得到△SKIPIF1<0,過SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級(jí)英語下冊 Unit 6 I'm watching TV Section B第4課時(shí)(2a-2c)教學(xué)設(shè)計(jì) (新版)人教新目標(biāo)版
- 10 在牛肚子里旅行(教學(xué)設(shè)計(jì))2024-2025學(xué)年統(tǒng)編版三年級(jí)語文上冊
- 2024-2025學(xué)年高中歷史 第二單元 凡爾賽-華盛頓體系下的短暫和平 第6課 國際聯(lián)盟教學(xué)教學(xué)設(shè)計(jì) 岳麓版選修3
- Unit 1 Home-Reading(教學(xué)設(shè)計(jì))2024-2025學(xué)年譯林版(2024)英語七年級(jí)下冊
- 裝飾施工現(xiàn)場安全用電
- 2024秋九年級(jí)語文上冊 第1單元 3我愛這土地教學(xué)設(shè)計(jì) 新人教版
- 管理學(xué)矩陣結(jié)構(gòu)
- 《煎荷包蛋》(教案)-2023-2024學(xué)年四年級(jí)下冊勞動(dòng)人教版
- 一年級(jí)道德與法治下冊 第四單元 我們在一起 14 請幫我一下吧教學(xué)設(shè)計(jì)2 新人教版
- 2024-2025學(xué)年高中生物 第二章 基因和染色體的關(guān)系 第1節(jié) 減數(shù)分裂和受精作用 一 減數(shù)分裂教學(xué)設(shè)計(jì)3 新人教版必修2
- (2024年更新)國家慢性疾病編碼新目錄
- 治療室物品分類擺放
- 一次性使用醫(yī)療用品管理制度
- 獸醫(yī)屠宰衛(wèi)生人員考試題庫及答案(415題)
- 商務(wù)預(yù)算員培訓(xùn)課件
- 物業(yè)合同增加人員補(bǔ)充協(xié)議書(2篇)
- 房屋中介公司員工管理規(guī)章制度
- 餐飲服務(wù)電子教案 學(xué)習(xí)任務(wù)3 餐巾折花技能(4)-餐巾折花綜合實(shí)訓(xùn)
- 先天性唇腭裂與顱面裂的診斷及治療(口腔頜面外科學(xué)課件)
- 醉里乾坤大壺中日月長-初中語文九年級(jí)第六單元名著導(dǎo)讀《水滸傳》整本書閱讀精讀研討課 公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- TCECA-G 0310-2024 離網(wǎng)制氫靈活消納與柔性化工系統(tǒng)開發(fā)規(guī)范
評(píng)論
0/150
提交評(píng)論