




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省韓城市蘇山分校2024年高三下學期第五次調(diào)研考試數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.2.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.3.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}4.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.5.高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.1006.函數(shù)的圖象大致為A. B. C. D.7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領(lǐng)先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.29.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或711.集合的真子集的個數(shù)是()A. B. C. D.12.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應(yīng)該為__________.14.已知向量,,則______.15.若函數(shù)的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數(shù)的值為________.16.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)函數(shù),且恒成立.(1)求實數(shù)的集合;(2)當時,判斷圖象與圖象的交點個數(shù),并證明.(參考數(shù)據(jù):)18.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設(shè)函數(shù).當時,,求的取值范圍.19.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.21.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構(gòu)成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.22.(10分)數(shù)列滿足,且.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設(shè),,作為一個基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.2、A【解析】
本道題繪圖發(fā)現(xiàn)三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結(jié)合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質(zhì),難度中等.3、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎(chǔ)題.4、D【解析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.5、D【解析】
由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據(jù)正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學生分析問題的能力,難度容易.6、D【解析】
由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.7、D【解析】
根據(jù)題意,是一個等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點睛】本題主要考查等比數(shù)列的實際應(yīng)用,還考查了建模解模的能力,屬于中檔題.8、B【解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.9、D【解析】
設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.10、C【解析】
根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.11、C【解析】
根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎(chǔ)題.12、B【解析】
構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.14、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運算轉(zhuǎn)化為數(shù)量積的運算.15、4【解析】
由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的16、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2個,證明見解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導數(shù)討論此函數(shù)零點的個數(shù).【詳解】(1)的定義域為,因為,1°當時,在上單調(diào)遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調(diào)遞減,,即在上無實根;2°當時,,則在上單調(diào)遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調(diào)遞減,此時在上無實根;②當時,在上單調(diào)遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調(diào)遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數(shù)與方程的轉(zhuǎn)化思想,考查導數(shù)的運用,屬于較難題.18、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.19、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.20、(1)證明見解析(2)【解析】
(1)根據(jù),求導,令,用導數(shù)法求其最小值.設(shè)研究在處左正右負,求導,分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.21、(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設(shè)出點和點坐標,運用點坐標計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當直線垂直于軸時,,且此時,,當直線不垂直于軸時,設(shè)直線由,得.,.要使恒成立,只需,即最小值為【點睛】本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 脂肪烴生產(chǎn)工-天然氣乙炔-空分-初級練習試題及答案
- 酶工程原理與技術(shù)課后題100道及答案
- 2025年青海貨運從業(yè)資格證考試題目和答案大全
- 北京律師在全國辦案情況
- 大學教學管理培訓大綱
- 2025數(shù)字化教育連鎖加盟合同
- 2025年三門峽貨運從業(yè)資格證考試題庫答案
- 2025年襄陽客貨運從業(yè)資格證考試教材
- 主任護師護理個案
- 2025個人購房合同模板
- 生態(tài)修復(fù)成本分析-全面剖析
- 山東2025年山東司法警官職業(yè)學院招聘38人筆試歷年參考題庫附帶答案詳解
- 高血脂高血壓護理
- 少喝飲料安全教育
- 外墻真石漆采購合同
- 《法律職業(yè)倫理》課件-第二講 法官職業(yè)倫理
- 《專業(yè)咖啡制作技術(shù)》課件
- 印刷行業(yè)售后服務(wù)質(zhì)量保障措施
- 《急性闌尾炎幻燈》課件
- 舞蹈工作室前臺接待聘用合同
- 《編制說明-變電站監(jiān)控系統(tǒng)防止電氣誤操作技術(shù)規(guī)范》
評論
0/150
提交評論