版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川成都青羊區(qū)外國語學(xué)校2024年高考沖刺模擬數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.2.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.3.曲線在點處的切線方程為()A. B. C. D.4.函數(shù)的圖象可能為()A. B.C. D.5.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠(yuǎn)地點離地面的距離為()A. B.C. D.6.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.7.已知,則,不可能滿足的關(guān)系是()A. B. C. D.8.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.9.△ABC的內(nèi)角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或10.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.11.已知實數(shù)集,集合,集合,則()A. B. C. D.12.若的展開式中的系數(shù)為150,則()A.20 B.15 C.10 D.25二、填空題:本題共4小題,每小題5分,共20分。13.不等式對于定義域內(nèi)的任意恒成立,則的取值范圍為__________.14.在一次體育水平測試中,甲、乙兩校均有100名學(xué)生參加,其中:甲校男生成績的優(yōu)秀率為70%,女生成績的優(yōu)秀率為50%;乙校男生成績的優(yōu)秀率為60%,女生成績的優(yōu)秀率為40%.對于此次測試,給出下列三個結(jié)論:①甲校學(xué)生成績的優(yōu)秀率大于乙校學(xué)生成績的優(yōu)秀率;②甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率;③甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系不確定.其中,所有正確結(jié)論的序號是____________.15.已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為.若時,,則不等式的解集是___________.16.已知x,y>0,且,則x+y的最小值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,過的直線與橢圓相交于兩點,且與軸相交于點.(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對稱點為,證明:直線過軸上的定點.18.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項和.19.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.20.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若,,證明:.21.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.22.(10分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標(biāo)軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先由題和拋物線的性質(zhì)求得點P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準(zhǔn)線與x軸交點F'(-1,0),雙曲線半焦距c=1,設(shè)點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.2、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標(biāo)的關(guān)系,根據(jù)列方程,化簡后求得離心率.【詳解】設(shè),依題意直線的方程為,代入雙曲線方程并化簡得,故,設(shè)焦點坐標(biāo)為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關(guān)的幾何性質(zhì),考查運算求解能力,屬于中檔題.3、A【解析】
將點代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當(dāng)時,代入可得,所以切點坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎(chǔ)題.4、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.5、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設(shè)衛(wèi)星近地點,遠(yuǎn)地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關(guān)鍵,屬于中檔題.6、D【解析】
運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7、C【解析】
根據(jù)即可得出,,根據(jù),,即可判斷出結(jié)果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數(shù)式和對數(shù)式的互化,對數(shù)的運算,以及基本不等式:和不等式的應(yīng)用,屬于中檔題8、D【解析】
依次將選項中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時,在上不單調(diào),故A不正確;當(dāng)時,在上單調(diào)遞減,故B不正確;當(dāng)時,在上不單調(diào),故C不正確;當(dāng)時,在上單調(diào)遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.9、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎(chǔ)題.10、C【解析】
以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標(biāo)系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設(shè)直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數(shù)形結(jié)合思想和向量法的應(yīng)用,屬于中檔題.11、A【解析】
可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎(chǔ)題.12、C【解析】
通過二項式展開式的通項分析得到,即得解.【詳解】由已知得,故當(dāng)時,,于是有,則.故選:C【點睛】本題主要考查二項式展開式的通項和系數(shù)問題,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,分離參數(shù),轉(zhuǎn)化為只對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內(nèi)的任意恒成立,即對于內(nèi)的任意恒成立,令,則只需在定義域內(nèi)即可,,,當(dāng)時取等號,由可知,,當(dāng)時取等號,,當(dāng)有解時,令,則,在上單調(diào)遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉(zhuǎn)化能力和計算能力.14、②③【解析】
根據(jù)局部頻率和整體頻率的關(guān)系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優(yōu)秀率均大于女生成績的優(yōu)秀率,故甲、乙兩校所有男生成績的優(yōu)秀率大于甲、乙兩校所有女生成績的優(yōu)秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學(xué)生成績的優(yōu)秀率與甲、乙兩校所有學(xué)生成績的優(yōu)秀率的大小關(guān)系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關(guān)系,意在考查學(xué)生的理解能力和應(yīng)用能力.15、【解析】
構(gòu)造,先利用定義判斷的奇偶性,再利用導(dǎo)數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于較難題.16、1【解析】
處理變形x+y=x()+y結(jié)合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當(dāng)且僅當(dāng)時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關(guān)鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)見解析【解析】
(1)由已知條件利用點斜式設(shè)出直線的方程,則可表示出點的坐標(biāo),再由的關(guān)系表示出點的坐標(biāo),而點在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點的坐標(biāo),則點的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗證)(2)設(shè),則,直線的方程為.由得,由,解得,,當(dāng)時,,故直線恒過定點.【點睛】此題考查的是直線與橢圓的位置關(guān)系中的過定點問題,計算過程較復(fù)雜,屬于難題.18、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當(dāng)時,,故.當(dāng)時,,則,,數(shù)列是首項為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個數(shù)列分成幾個可以直接求和的數(shù)列.19、(1)證明見詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,由點F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點,連接,,,平面平面平面..平面平面(2)以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè).則設(shè)平面的一個法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個法向量,二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直的判定,向量法解決線面角、二面角的問題,屬于中檔題.20、(1)(2)見證明【解析】
(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度水庫水面環(huán)境整治項目合作合同
- 《知識產(chǎn)權(quán)法概論》課件
- 家具定制銷售工作總結(jié)
- 二零二五年度智能家居水電安裝與智能家居系統(tǒng)融合合同3篇
- 領(lǐng)導(dǎo)干部與教師培訓(xùn)計劃
- 物流行業(yè)客服話務(wù)員工作總結(jié)
- 美食供應(yīng)合同三篇
- 二零二五年度PVC管件及配件定制生產(chǎn)銷售合同范本
- 寧夏財經(jīng)職業(yè)技術(shù)學(xué)院《數(shù)學(xué)史與數(shù)學(xué)文化鑒賞》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南機(jī)電職業(yè)技術(shù)學(xué)院《點集拓?fù)渑c泛函分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 陜西省西安市高新一中2024-2025學(xué)年九年級上學(xué)期綜合素養(yǎng)評價(三)化學(xué)試卷(含答案)
- 繼電保護(hù)多選試題庫與參考答案
- 2024版健康醫(yī)療服務(wù)機(jī)構(gòu)合作協(xié)議范本3篇
- 公務(wù)車輛定點加油服務(wù)投標(biāo)文件(技術(shù)方案)
- DB21∕T 3240-2020 芹菜農(nóng)藥安全使用生產(chǎn)技術(shù)規(guī)程
- 科研辦公樓施工組織設(shè)計
- 向電網(wǎng)申請光伏容量的申請書
- 1-27屆希望杯數(shù)學(xué)競賽初一試題及答案
- 2024-2030年中國硫磺行業(yè)供需形勢及投資可行性分析報告版
- 傳統(tǒng)與現(xiàn)代結(jié)合:《剪窗花》2024年教學(xué)課件
- 冷凍設(shè)備租賃合同
評論
0/150
提交評論