版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北武安市西土山鄉(xiāng)西土山中學2023年數(shù)學九年級第一學期期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)的圖象可能是()A. B.C. D.2.若一個扇形的圓心角是45°,面積為,則這個扇形的半徑是()A.4 B. C. D.3.如圖,四邊形ABCD為⊙O的內接四邊形,E是BC延長線上的一點,已知∠BOD=130°,則∠DCE的度數(shù)為()A.45° B.50° C.65° D.75°4.兩相似三角形的相似比為,它們的面積之差為15,則面積之和是()A.39 B.75 C.76 D.405.對于反比例函數(shù),下列說法正確的是()A.圖象經(jīng)過點 B.圖象位于第二、四象限C.圖象是中心對稱圖形 D.當時,隨的增大而增大6.一元二次方程的解是()A. B. C. D.7.如圖,的直徑,弦于.若,則的長是()A. B. C. D.8.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=19.如圖,在平行四邊形ABCD中,點E在DC邊上,連接AE,交BD于點F,若DE:EC=2:1,則△DEF的面積與△BAF的面積之比為()A.1:4 B.4:9 C.9:4 D.2:310.如圖,已知等邊△ABC的邊長為4,以AB為直徑的圓交BC于點F,CF為半徑作圓,D是⊙C上一動點,E是BD的中點,當AE最大時,BD的長為()A. B. C.4 D.611.將二次函數(shù)y=2x2﹣4x+5的右邊進行配方,正確的結果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+312.方程組的解的個數(shù)為()A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.一個不透明的布袋里裝有100個只有顏色不同的球,這100個球中有m個紅球通過大量重復試驗后發(fā)現(xiàn),從布袋中隨機摸出一個球摸到紅球的頻率穩(wěn)定在左右,則m的值約為______.14.如圖,四邊形是菱形,經(jīng)過點、、與相交于點,連接、,若,則的度數(shù)為__________.15.若雙曲線的圖象在第二、四象限內,則的取值范圍是________.16.如圖,是半圓的直徑,,則的度數(shù)是_______.17.如果是從四個數(shù)中任取的一個數(shù),那么關于的方程的根是負數(shù)的概率是________.18.在平面直角坐標系中,點P(4,1)關于點(2,0)中心對稱的點的坐標是_______.三、解答題(共78分)19.(8分)“2020比佛利”無錫馬拉松賽將于3月22日鳴槍開跑,本次比賽設三個項目:A.全程馬拉松;B.半程馬拉松;C.迷你馬拉松.小明和小紅都報名參與該賽事的志愿者服務工作,若兩人都已被選中,屆時組委會隨機將他們分配到三個項目組.(1)小明被分配到“迷你馬拉松”項目組的概率為;(2)請利用樹狀圖或列表法求兩人被分配到同一個項目組的概率.20.(8分)已知拋物線y=x2+bx+c的圖像過A(﹣1,0)、B(3,0)兩點.求拋物線的解析式和頂點坐標.21.(8分)已知二次函數(shù)y=a?4x+c的圖象過點(?1,0)和點(2,?9),(1)求該二次函數(shù)的解析式并寫出其對稱軸;(2)當x滿足什么條件時,函數(shù)值大于0?(不寫求解過程),22.(10分)在平面直角坐標系xOy中,拋物線交y軸于點為A,頂點為D,對稱軸與x軸交于點H.(1)求頂點D的坐標(用含m的代數(shù)式表示);(2)當拋物線過點(1,-2),且不經(jīng)過第一象限時,平移此拋物線到拋物線的位置,求平移的方向和距離;(3)當拋物線頂點D在第二象限時,如果∠ADH=∠AHO,求m的值.23.(10分)已知二次函數(shù)y=-x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(2,3),(3,0).(1)則b=,c=;(2)該二次函數(shù)圖象與y軸的交點坐標為,頂點坐標為;(3)在所給坐標系中畫出該二次函數(shù)的圖象;(4)根據(jù)圖象,當-3<x<2時,y的取值范圍是.24.(10分)如圖,已知拋物線.(1)用配方法將化成的形式,并寫出其頂點坐標;(2)直接寫出該拋物線與軸的交點坐標.25.(12分)為了落實國務院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產(chǎn)品每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式.(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應定為每千克多少元?26.2019年9月30日,由著名導演李仁港執(zhí)導的電影《攀登者》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用模球的辦法決定勝負,獲勝者去看電影,游戲規(guī)則如下:在一個不透明的袋子中裝有編號1-4的四個球(除編號外都相同),從中隨機摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.(1)請用列表或畫樹狀圖的方法表示出隨機摸球所有可能的結果;(2)分別求出小亮和小麗獲勝的概率,并判斷這種游戲規(guī)則對兩人公平嗎?
參考答案一、選擇題(每題4分,共48分)1、B【分析】觀察二次函數(shù)圖象,找出>0,>0,再結合反比例函數(shù)、一次函數(shù)圖象與系數(shù)的關系,即可得出結論.【詳解】觀察二次函數(shù)圖象,發(fā)現(xiàn):
拋物線的頂點坐標在第四象限,即,
∴,.
∵反比例函數(shù)中,
∴反比例函數(shù)圖象在第一、三象限;
∵一次函數(shù),,
∴一次函數(shù)的圖象過第一、二、三象限.
故選:B.【點睛】本題考查了反比例函數(shù)的圖象、一次函數(shù)的圖象以及二次函數(shù)的圖象,解題的關鍵是根據(jù)二次函數(shù)的圖象找出,.解決該題型題目時,熟記各函數(shù)圖象的性質是解題的關鍵.2、A【分析】根據(jù)扇形面積公式計算即可.【詳解】解:設扇形的半徑為為R,由題意得,解得R=4.故選A.【點睛】本題考查了扇形的面積公式,R是扇形半徑,n是弧所對圓心角度數(shù),π是圓周率,L是扇形對應的弧長.那么扇形的面積為:.3、C【分析】根據(jù)圓周角定理求出∠A,根據(jù)圓內接四邊形的性質得出∠DCE=∠A,代入求出即可.【詳解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四邊形ABCD為⊙O的內接四邊形,∴∠DCE=∠A=65°,故選:C.【點睛】本題考查了圓周角定理,圓內接四邊形的性質的應用,注意:圓內接四邊形的對角互補,并且一個外角等于它的內對角.4、A【分析】由兩相似三角形的相似比為,得它們的面積比為4:9,設它們的面積分別為4x,9x,列方程,即可求解.【詳解】∵兩相似三角形的相似比為,∴它們的面積比為4:9,設它們的面積分別為4x,9x,則9x-4x=15,∴x=3,∴9x+4x=13x=13×3=39.故選A.【點睛】本題主要考查相似三角形的性質,掌握相似三角形的面積比等于相似比的平方,是解題的關鍵.5、C【分析】根據(jù)反比例函數(shù)的圖象和性質,可對各個選項進行分析,判斷對錯即可.【詳解】解:A、∵當x=1時,y=1,∴函數(shù)圖象過點(1,1),故本選項錯誤;B、∵,∴函數(shù)圖象的每個分支位于第一和第三象限,故本選項錯誤;C、由反比例函數(shù)的圖象對稱性可知,反比例函數(shù)的圖象是關于原點對稱,圖象是中心對稱圖,故本選項正確;D、∵,∴在每個象限內,y隨著x的增大而減小,故本選項錯誤;故選:C.【點睛】本題重點考查反比例函數(shù)的圖象和性質,熟練掌握反比例函數(shù)圖象和性質是解題的關鍵.6、D【分析】這個式子先移項,變成x2=4,從而把問題轉化為求4的平方根.【詳解】移項得,x2=4開方得,x=±2,故選D.【點睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數(shù),先把系數(shù)化為1,再開平方取正負,分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.7、C【分析】先根據(jù)線段的比例、直徑求出OC、OP的長,再利用勾股定理求出CP的長,然后根據(jù)垂徑定理即可得.【詳解】如圖,連接OC直徑在中,弦于故選:C.【點睛】本題考查了勾股定理、垂徑定理等知識點,屬于基礎題型,掌握垂徑定理是解題關鍵.8、D【解析】根據(jù)拋物線的頂點式,直接得出結論即可.【詳解】解:∵拋物線y=2(x-1)2-6,
∴拋物線的對稱軸是x=1.
故選D.【點睛】本題考查了二次函數(shù)的性質,要熟悉二次函數(shù)的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.9、B【分析】先判斷△DEF∽△BAF,根據(jù)相似三角形的面積比等于相似比的平方計算即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB,∴△DEF∽△BAF,∴.又∵DE:EC=2:1,∴,∴.故選B.【點睛】本題考查平行四邊形的性質、相似三角形的判定和性質,熟練掌握相似三角形的判定和性質是解題的關鍵.10、B【分析】點E在以F為圓心的圓上運到,要使AE最大,則AE過F,根據(jù)等腰三角形的性質和圓周角定理證得F是BC的中點,從而得到EF為△BCD的中位線,根據(jù)平行線的性質證得CD⊥BC,根據(jù)勾股定理即可求得結論.【詳解】解:點D在⊙C上運動時,點E在以F為圓心的圓上運到,要使AE最大,則AE過F,連接CD,∵△ABC是等邊三角形,AB是直徑,∴EF⊥BC,∴F是BC的中點,∵E為BD的中點,∴EF為△BCD的中位線,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故BD=,故選:B.【點睛】本題主要考查等邊三角形的性質,圓周角定理,三角形中位線的性質以及勾股定理,熟練并正確的作出輔助圓是解題的關鍵.11、C【解析】先提出二次項系數(shù),再加上一次項系數(shù)一半的平方,即得出頂點式的形式.【詳解】解:提出二次項系數(shù)得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故選:C.【點睛】本題考查二次函數(shù)的三種形式,一般式:y=ax2+bx+c,頂點式:y=a(x-h)2+k;兩根式:y=12、A【分析】分類討論x與y的正負,利用絕對值的代數(shù)意義化簡,求出方程組的解,即可做出判斷.【詳解】解:根據(jù)x、y的正負分4種情況討論:①當x>0,y>0時,方程組變形得:,無解;②當x>0,y<0時,方程組變形得:,解得x=3,y=2>0,則方程組無解;③當x<0,y>0時,方程組變形得:,此時方程組的解為;④當x<0,y<0時,方程組變形得:,無解,綜上所述,方程組的解個數(shù)是1.故選:A.【點睛】本題考查了解二元一次方程組,利用了分類討論的思想,熟練掌握運算法則是解本題的關鍵.二、填空題(每題4分,共24分)13、1【解析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】根據(jù)題意,得:,解得:,故答案為:1.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.14、【分析】根據(jù)菱形的性質得到∠ACB=∠DCB=(180°?∠D)=51°,根據(jù)圓內接四邊形的性質得到∠AEB=∠D=78°,由三角形的外角的性質即可得到結論.【詳解】解:∵四邊形ABCD是菱形,∠D=78°,
∴∠ACB=∠DCB=(180°?∠D)=51°,
∵四邊形AECD是圓內接四邊形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB?∠ACE=27°,
故答案為:27°.【點睛】本題考查了菱形的性質,三角形的外角的性質,圓內接四邊形的性質,熟練掌握菱形的性質是解題的關鍵.15、m<8【分析】對于反比例函數(shù):當k>0時,圖象在第一、三象限;當k<0時,圖象在第二、四象限.【詳解】由題意得,解得故答案為:【點睛】本題考查的是反比例函數(shù)的性質,本題屬于基礎應用題,只需學生熟練掌握反比例函數(shù)的性質,即可完成.16、130【分析】根據(jù)AB為直徑,得到∠ACB=90°,進而求出∠ABC,再根據(jù)圓內接四邊形性質即可求出∠D.【詳解】解:∵AB為直徑,∴∠ACB=90°,∴∠ABC=90°-∠CAB=90°-40°=50°,∵四邊形ABCD是圓內接四邊形,∴∠D=180°-∠ABC=130°.故答案為:130°【點睛】本題考查了“直徑所對的角是圓周角”、“圓內接四邊形對角互補”、“直角三角形兩銳角互余”等定理,熟知相關定理,并能靈活運用是解題關鍵.17、【分析】解分式方程得,由方程的根為負數(shù)得出且,即a的取值范圍,再從所列4個數(shù)中找到符合條件的結果數(shù),從而利用概率公式計算可得.【詳解】解:將方程兩邊都乘以,得:,解得,方程的解為負數(shù),且,則且,所以在所列的4個數(shù)中,能使此方程的解為負數(shù)的有0、-2這2個數(shù),則關于的方程的根為負數(shù)的概率為,故答案為:.【點睛】本題主要考查了分式方程的解法和概率公式,解題的關鍵是掌握解分式方程的能力及隨機事件的概率(A)事件可能出現(xiàn)的結果數(shù)所有可能出現(xiàn)的結果數(shù).18、(0,-1)【分析】在平面直角坐標系中畫出圖形,根據(jù)已知條件列出方程并求解,從而確定點關于點中心對稱的點的坐標.【詳解】解:連接并延長到點,使,設,過作軸于點,如圖:在和中∴∴,∵,∴,∴,∴故答案是:【點睛】本題考查了一個點關于某個點對稱的點的坐標,關鍵在于掌握點的坐標的變化規(guī)律.三、解答題(共78分)19、(1);(2).【分析】(1)直接利用概率公式計算;(2)先利用畫樹狀圖展示所有9種等可能的結果數(shù),找出兩人被分配到同一個項目組的結果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)小明被分配到“迷你馬拉松”項目組的概率為;(2)畫樹狀圖為:共有9種等可能的結果數(shù),其中兩人被分配到同一個項目組的結果數(shù)為3,所以兩人被分配到同一個項目組的概率==.【點睛】此題主要考查概率的求解,解題的關鍵是熟知樹狀圖的畫法.20、y=x2-2x-3,頂點坐標為(1,-4).【解析】把A、B兩點坐標代入拋物線解析式,利用待定系數(shù)法可求得其解析式,再化為頂點式即可求得其頂點坐標.【詳解】∵拋物線經(jīng)過A(-1,0),B(3,0)兩點,∴1-b+c=解得b=-2,c=-3,∴拋物線解析式為y=x2-2x-3.∵y=x2-2x-3=(x-1)2-4,∴拋物線的頂點坐標為(1,-4).【點睛】本題考查了待定系數(shù)法、二次函數(shù)的性質.21、(1),;(2)當x<或x>5時,函數(shù)值大于1.【分析】(1)把(-1,1)和點(2,-9)代入y=ax2-4x+c,得到一個二元一次方程組,求出方程組的解,即可得到該二次函數(shù)的解析式,然后求出對稱軸;(2)求得拋物線與x軸的交點坐標后即可確定正確的答案.【詳解】解:(1)∵二次函數(shù)的圖象過點(?1,1)和點(2,?9),∴,解得:,∴;∴對稱軸為:;(2)令,解得:,,如圖:∴點A的坐標為(,1),點B的坐標為(5,1);∴結合圖象得到,當x<或x>5時,函數(shù)值大于1.【點睛】本題主要考查對用待定系數(shù)法求二次函數(shù)的解析式及拋物線與x軸的交點坐標的知識,解題的關鍵是正確的求得拋物線的解析式.22、(1)頂點D(m,1-m);(1)向左平移了1個單位,向上平移了1個單位;(3)m=-1或m=-1.【解析】試題分析:把拋物線的方程配成頂點式,即可求得頂點坐標.把點代入求出拋物線方程,根據(jù)平移規(guī)律,即可求解.分兩種情況進行討論.試題解析:(1)∵,∴頂點D(m,1-m).(1)∵拋物線過點(1,-1),∴.即,∴或(舍去),∴拋物線的頂點是(1,-1).∵拋物線的頂點是(1,1),∴向左平移了1個單位,向上平移了1個單位.(3)∵頂點D在第二象限,∴.情況1,點A在軸的正半軸上,如圖(1).作于點G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍).情況1,點A在軸的負半軸上,如圖(1).作于點G,∵A(0,),D(m,-m+1),∴H(),G(),∴.∴.整理得:.∴或(舍),或23、(1)b=2,c=3;(2)(0,3),(1,4)(3)見解析;(4)-12<y≤4【解析】(1)將點(2,3),(3,0)的坐標直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,將二次函數(shù)的解析式華為頂點式即可;(3)根據(jù)二次函數(shù)的定點、對稱軸及所過的點畫出圖象即可;(4)直接由圖象可得出y的取值范圍.【詳解】(1)解:把點(2,3),(3,0)的坐標直接代入y=-x2+bx+c得,解得,故答案為:b=2,c=3;(2)解:令x=0,c=3,二次函數(shù)圖像與y軸的交點坐標為則(0,3),二次函數(shù)解析式為y=y=-x2+2x+3=-(x-1)2+4,則頂點坐標為(1,4).(3)解:如圖所示…(4)解:根據(jù)圖像,當-3<x<2時,y的取值范圍是:-12<y≤4.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.也考查了二次
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園緊急保安招聘合同
- 貨車環(huán)境衛(wèi)生合同
- 飼料配送貨車司機聘用合同
- 綠色住宅地熱井施工合同
- 設備租賃協(xié)議書范本
- 耕地無償耕種協(xié)議書
- 瓦工勞務合同書樣本
- 公共建筑光伏 框架合作協(xié)議書
- 集體林權承包合同范本
- 黃河干流供水合同范例
- 小學生講海軍司令肖勁光的紅色故事肖勁光先進事跡學習
- 養(yǎng)老院的經(jīng)營規(guī)劃方案
- TSG51-2023起重機械安全技術規(guī)程
- 人教版英語初二上學期試題及答案指導(2024年)
- 餐飲管理招聘面試題與參考回答(某大型央企)
- 期末+(試題)+-2024-2025學年譯林版(三起)(2024)英語三年級上冊
- 2023年農(nóng)機專業(yè)合作社調研報告(五篇)
- 2024年秋季新人教版七年級上冊地理全冊導學案(2024年新教材)
- TCMAM Z25-2024“卡洛甘露”藏?。{沐)質量標準
- 人工智能生成內容的著作權侵權風險與侵權責任分配
- 2024年高考英語試題(新高考Ⅱ卷) 含解析
評論
0/150
提交評論