版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山西省懷仁第一中學(xué)高考數(shù)學(xué)必刷試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.22.已知集合,集合,那么等于()A. B. C. D.3.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.4.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.5.的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.406.已知點(diǎn)是拋物線的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上且滿足,若取得最大值時,點(diǎn)恰好在以為焦點(diǎn)的橢圓上,則橢圓的離心率為()A. B. C. D.7.已知邊長為4的菱形,,為的中點(diǎn),為平面內(nèi)一點(diǎn),若,則()A.16 B.14 C.12 D.88.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,9.函數(shù)在內(nèi)有且只有一個零點(diǎn),則a的值為()A.3 B.-3 C.2 D.-210.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.11.木匠師傅對一個圓錐形木件進(jìn)行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.12.若集合,,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.14.已知點(diǎn)是橢圓上一點(diǎn),過點(diǎn)的一條直線與圓相交于兩點(diǎn),若存在點(diǎn),使得,則橢圓的離心率取值范圍為_________.15.已知等差數(shù)列的各項(xiàng)均為正數(shù),,且,若,則________.16.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點(diǎn)的一次函數(shù)與軸的交點(diǎn)為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)拋物線過點(diǎn).(1)求拋物線C的方程;(2)F是拋物線C的焦點(diǎn),過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),若,求的值.18.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.19.(12分)已知函數(shù).(1)討論函數(shù)的極值;(2)記關(guān)于的方程的兩根分別為,求證:.20.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線:于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長度最小時,求的值.21.(12分)2019年是五四運(yùn)動100周年.五四運(yùn)動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來之際,學(xué)校組織“五四運(yùn)動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.22.(10分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.2、A【解析】
求出集合,然后進(jìn)行并集的運(yùn)算即可.【詳解】∵,,∴.故選:A.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運(yùn)算,屬于基礎(chǔ)題.3、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖4、D【解析】
本題首先可以通過題意畫出圖像并過點(diǎn)作垂線交于點(diǎn),然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果。【詳解】根據(jù)題意可畫出以上圖像,過點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)椋?,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡得,,,,故選D。【點(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。5、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項(xiàng)==-40+80=406、B【解析】
設(shè),利用兩點(diǎn)間的距離公式求出的表達(dá)式,結(jié)合基本不等式的性質(zhì)求出的最大值時的點(diǎn)坐標(biāo),結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因?yàn)槭菕佄锞€的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)為拋物線的焦點(diǎn),所以,則,當(dāng)時,,當(dāng)時,,當(dāng)且僅當(dāng)時取等號,此時,,點(diǎn)在以為焦點(diǎn)的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點(diǎn)睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.7、B【解析】
取中點(diǎn),可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點(diǎn),連接,,,即.,,,則.故選:.【點(diǎn)睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.8、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.9、A【解析】
求出,對分類討論,求出單調(diào)區(qū)間和極值點(diǎn),結(jié)合三次函數(shù)的圖像特征,即可求解.【詳解】,若,,在單調(diào)遞增,且,在不存在零點(diǎn);若,,在內(nèi)有且只有一個零點(diǎn),.故選:A.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)、導(dǎo)數(shù)的應(yīng)用,考查分類討論思想,熟練掌握函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.10、D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.11、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.12、C【解析】試題分析:化簡集合故選C.考點(diǎn):集合的運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻?,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點(diǎn)與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.14、【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點(diǎn),使得,,即,,,,故答案為:【點(diǎn)睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運(yùn)用,考查直線參數(shù)方程的運(yùn)用,屬于中檔題.15、【解析】
設(shè)等差數(shù)列的公差為,根據(jù),且,可得,解得,進(jìn)而得出結(jié)論.【詳解】設(shè)公差為,因?yàn)?,所以,所以,所以故答案為:【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式、需熟記公式,屬于基礎(chǔ)題.16、【解析】
由定義可知三點(diǎn)共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點(diǎn)共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點(diǎn)睛】本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)代入計算即可.(2)設(shè)直線AB的方程為,再聯(lián)立直線與拋物線的方程,消去可得的一元二次方程,再根據(jù)韋達(dá)定理與求解,進(jìn)而利用弦長公式求解即可.【詳解】解:(1)因?yàn)閽佄锞€過點(diǎn),所以,所以,拋物線的方程為(2)由題意知直線AB的斜率存在,可設(shè)直線AB的方程為,,.因?yàn)?所以,聯(lián)立,化簡得,所以,,所以,,解得,所以.【點(diǎn)睛】本題考查拋物線的方程以及聯(lián)立直線與拋物線求弦長的簡單應(yīng)用.屬于基礎(chǔ)題.18、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.19、(1)見解析;(2)見解析【解析】
(1)對函數(shù)求導(dǎo),對參數(shù)討論,得函數(shù)單調(diào)區(qū)間,進(jìn)而求出極值;(2)是方程的兩根,代入方程,化簡換元,構(gòu)造新函數(shù)利用函數(shù)單調(diào)性求最值可解.【詳解】(1)依題意,;若,則,則函數(shù)在上單調(diào)遞增,此時函數(shù)既無極大值,也無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;若,則,令,解得,故當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,此時函數(shù)有極大值,無極小值;(2)依題意,,則,,故,;要證:,即證,即證:,即證,設(shè),只需證:,設(shè),則,故在上單調(diào)遞增,故,即,故.【點(diǎn)睛】本題考查函數(shù)極值及利用導(dǎo)數(shù)證明二元不等式.證明二元不等式常用方法是轉(zhuǎn)化為證明一元不等式,再轉(zhuǎn)化為函數(shù)最值問題.利用導(dǎo)數(shù)證明不等式的基本方法:(1)若與的最值易求出,可直接轉(zhuǎn)化為證明;(2)若與的最值不易求出,可構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性或最值,證明.20、(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因?yàn)閽佄锞€的方程為,所以的坐標(biāo)為,設(shè),因?yàn)閳A與軸、直線都相切,平行于軸,所以圓的半徑為,點(diǎn),則直線的方程為,即,所以,又,所以,即,所以的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年數(shù)控銑床項(xiàng)目規(guī)劃申請報告模范
- 2024-2025學(xué)年宣城市寧國市三上數(shù)學(xué)期末監(jiān)測試題含解析
- 2025年醫(yī)用植入材料項(xiàng)目提案報告模范
- 2025年掃瞄隧道顯微鏡項(xiàng)目立項(xiàng)申請報告模稿
- 二年級上冊語文教學(xué)計劃集合5篇
- ??粕舐毿藕霞?篇
- 銷售主管個人述職報告
- 教育的實(shí)習(xí)報告范文九篇
- 員工離職報告(匯編15篇)
- 《觀察物體(二)》教學(xué)實(shí)錄-2023-2024學(xué)年四年級下冊數(shù)學(xué)人教版
- 智能化實(shí)驗(yàn)室建設(shè)方案
- 福建省福州市倉山區(qū)2023-2024學(xué)年六年級上學(xué)期期末數(shù)學(xué)試卷
- 師德師風(fēng)自評情況對照《新時代高校教師職業(yè)行為十項(xiàng)準(zhǔn)則》
- 醫(yī)療器械安全生產(chǎn)培訓(xùn)
- 2023年電池Pack結(jié)構(gòu)設(shè)計工程師年度總結(jié)及下年規(guī)劃
- 《科技改善生活》主題班會教案內(nèi)容
- 2022年湖南工商大學(xué)數(shù)據(jù)科學(xué)與大數(shù)據(jù)技術(shù)專業(yè)《計算機(jī)網(wǎng)絡(luò)》科目期末試卷A(有答案)
- (完整版)18項(xiàng)醫(yī)院核心制度:免修版模板范本
- 西北大學(xué)信息科學(xué)與技術(shù)學(xué)院
- 基于PLC的自動打鈴控制器
- 中式烹調(diào)技藝教案
評論
0/150
提交評論