西安交大英文chapter4 part_第1頁
西安交大英文chapter4 part_第2頁
西安交大英文chapter4 part_第3頁
西安交大英文chapter4 part_第4頁
西安交大英文chapter4 part_第5頁
已閱讀5頁,還剩131頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

94.4ForceondislocationForcefromexternalstressPeach-KoehlerequationForcebetweendislocationsForcebetweendislocationandsoluteatomLinetensionofdislocationLatticeresistanceofdislocationmovementImageforceZYXGEHFObBCDAEx.1Inacubiccrystal,asquaredislocationloopABCD,itsslipplaneEFGH∥bothbases.AB∥EF,Burgersvectorb⊥AB.Shearstressτ∥bonbothbases.JudgetheDis.typeanddirectionofmovementofeachsectionofdislocation.DA:gliding,directionXCD:gliding,directionYBC:gliding,direction-XAB:gliding,direction-YAnswer:Imagineaforceexist!Itsdirection=dis.motiondirec.Whydoesthedis.move?Directionofdis.motionVSτ?Deformationwork=

virtualworkbythevirtualforceondislocationThenweget(1)、Forcefromexternalstress1.CalculationbyvirtualworkprincipleAttention:thefistheforceperunitlength

Discussion(1)Foredged.,thestressrefersto(a)shearstressonaplane//slipplaneandadirection//b;

(b)normalstressonaplane//halfatomicplaneandadirection//b(a)glide(b)climb(3)Thevirtualforce┴dislocationline,sameasmovementofdislocationline(2)Forscrewd.,thestressreferstoshearstressonaplane//slipplaneandadirection//b

Calculatetheforceonadislocationofaunitlengthactedbyastressfield.(2)、Peach-Koehlerequation1.ApplicationofPeach-Koehlerequation2.Peach-Koehlerequation

isstressfieldisBurgersvectorisunitdirectionvectorofdislocationline

3.Peach-Koehlerequation

3.Peach-KoehlerequationEx.2,squared.loopABCDinacubiccrystal,glideplaneEFGH//baseplane,AB∥EF,

b⊥AB,τ

∥b,τisactedonthebases.Forceonaunitlengthd.line?ZYXGEHFOBCDAbDA:gliding,direction-XCD:gliding,direction-YBC:gliding,directionXAB:gliding,directionYf=τbEx.3,squared.loopABCDinacubiccrystal,glideplaneEFGH//baseplane,AB∥EF,

b⊥AB,τ∥b,τisactedonthefrontandbacksides.Forceonaunitlengthd.line?ZYXGEHFOBCDAb???bEx.4

Apositiveedged.withbinacubiccrystal,slipplane//baseplane.ifτ∥b,τisactedonthebases.forceonaunitlengthd.line?

=τbj

Assumethat:ThenWeget

2.CalculationbyPeach-KoehlerequationZYXEx.5

Apositiveedged.withbinacubiccrystal,slipplane//baseplane.ifτ∥b,τisactedonthefrontandbacksides.forceonaunitlengthd.line?2.CalculationbyPeach-KoehlerequationAB:noBC:τb,//ZCD:noDA:τb,//-ZEx.6Arightscrewd.inacubiccrystal,b//baseplane.Ifτisactedonbaseplanes,forming45°withb,forceonaunitlengthd.line?AssumeThenWeget

ZYXHowtounderstandthedirectionaldisagreementbetweenexternalstressanddislocationmotion/force?Foredgedislocation,theyareconsistent.Forscrewdislocation,theyarevertical!Wecanimaginethatthisedgedislocationisthedirectresultofthestress,andthescrewdislocationistheresultoftheedgedislocationsweeping.Anedgedislocationisformedbeforetheformationofascrewdislocation.E.D.VSS.D.EndEnd10

—Stressfieldresultingfromd.1(locatedongridorigin)

—Burgersvectorofd.2

—Unitdirectionvectorofd.2(3)、ForcebetweendislocationsUsingPeach-Koehlerequation(右手直角坐標系)db1b2d.1d.2Discussthedb1b2d.1d.21.Forcebetweentwo//screwd.Rightscrewdis.DACBb(2)Rectangularcoordinatesystemdb1b2d.1d.21.Forcebetweentwo//screwd.Repulsionforlikescrewd.,forunlikescrewd.?ZYoutsideXHowtounderstandtheinteractionbetweentwoscrewdislocations?Dislocation1producesacertaindistortion,leadingtoastressfield/strainenergy.Dis.2tendstofurtherchangethedistortion,leadingtochangethestressfield/strainenergy.Discussion:Howaboutthedifficultytoproducetheseconddislocationnearthefirstone?LikeVSUnlike?Engineeringapplication!Whydenselydistributeddislocationstorestricttheplasticdeformation?d2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1bisnotcontained.d2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1YisoutsidescreenTheny=0plane.ZYoutsideXy=0x=-dd2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1Repulsionforlikee.d.,attractionforunlikee.d.YisoutsidescreenTheny=0plane.ZYoutsideXdb1b2d.1d.23.Noforcebetweenedged.//screwd.YisoutsidescreenTheny=0plane.ZYoutsideX(θ)ⅠⅡb2b1θXrOY4.Ffortwo//edged.ontwo//glideplanePositivezaxis:outsidescreen(x,y)a)Liked.YXb)Unliked.XYGenerally,fy>fx,likedis.tendtodepartandformdis.wallresultinginlowgrainboundary(thengrainrefinement).Ex.6d.1//d.2locatedatadistanceofd,theincludedangleforb1/b2isπ/4,forceonaunitlengthd.2line?Positivezaxis:outsidescreenEx.6d.1//d.2locatedatadistanceofd,theincludedangleforb1/b2isπ/4,forceonaunitlengthd.2line?Positivezaxis:outsidescreenEx.7d.(AB)andd.(CD):locatedfromd,┴butnotcoplanar.|b1|=|b2|=b.Calculate:(1)forceonaunitlengthd.(CD),(2)totalforceond.(CD),(3)totaltorqueond.(CD),(4)resultantmovement.

fordifferentd.combinations.

(a)twoscrewd.(b)twoedged.

(c)edgeandscrew(1)twoscrew

f=(σ·b2)×l02

f=(σ·b2)×l02(2)twoedge

f=(σ·b2)×l02(3)edgeandscrewDiscussion(1)Thereareattractionandrepulsionbetweendislocations.Foreachsectionofadislocation,therearethedifferentinteractions/forces(orzeroatsomepoint)(2)Theinteractiontendstomovedislocations,wesupposethatthemovementresultsfromthevirtualforces.(3)Theinteractiontendstodecreasethesystemenergy.11XYMakeapore(radiusr0)inanelasticsolid,thenputarigidsphere(radiusr1)intothepore.AworkWisactedbythenormalstressofthedislocationbyresistingorpromotingtheprocess.1)Cottrellatmosphereisdegreeofmisfit(4)Forcebetweendislocationandimpurityatom1.Elasticinteraction:d.VSsoluteisaveragenormalstressattherigidsphereForsolidsolutionalloy,oneimpurityatomisarigidsphere.Assumethattheinteractionenergybetweenimpurityatomandd.isE.Then為何取負:對外做功則能量降低Isoenergeticline(dashed)andforceline(solid)fortheinteractionbetweenedged.andimpurity(interstitialatomsorlargesubstitutionalatoms)XYForinterstitialatomsandlargesubstitutionalatoms,β>0.Tominimizeenergy,theytendtosegregatejustbelowdislocationXYIsoenergeticline(dashed)andforceline(solid)fortheinteractionbetweenedged.andimpurity(smallsubstitutionalatoms)Forsmallsubstitutionalatoms,β<0Tominimizeenergy,theytendtosegregatejustabovedislocation.Cottrellatmosphere:theimpurityatomssegregatedaroundtheedgedislocation.

TheypresentBoltzmannconcentrationdistribution

—averageconcentrationofimpurity

—temperature

—BoltzmannconstantNote:Cottrellatmospherecanimpededislocationmovementbypinningdislocation.EngineeringapplicationSharpyieldpointinstress-straincurveStrainaging:timeandtemperaturedependentBCC;C/N/O2)Snoekatmosphere

Soluteatomsregularlylocatedaroundscrewd.duetothenonsphericalsymmetrydistortionofcrystallattice.Itcanimpededislocationmovement.Inmetal,electrostaticdipolecanbeformedduetothemovementoffreeelectronsfromcompressivestressregiontotensilestressregionaroundd..Itchangestheconcentrationdistributionofsoluteatomwithdifferentelectronvalencefromsolventatomsintheregionnearslipplaneofanedged..ChargedjogSlipplane2.Electrostaticinteraction:d.VSsoluteInionicsolid,theconcentrationdistributionofsoluteionsischangedby:theelectrostaticinteractionbetweenthechargedjog

ofedged.andthechargedsolute.Thereischemicalinteractionbetweensoluteatomsandthestackingfaultsofextendedd.Itresultsinthedifferentconcentrationfromthatinbulkaroundthestackingfaultsareaofextendeddislocation.Suzukiatmosphere:theconcentratedsoluteatomsinthestackingfaultsofextendeddislocation.Itimpedesthedislocationmovement.

3.Chemicalinteraction:d.VSsoluteSoluteconcentrationinstackingfaultsC1MeansoluteconcentrationC0>

5.Linetensionofd.LinetensionLineenergydensity:J·m-1=(N·m)·m-1=

N:Linetension(force)Equaltostrainenergyperunitlengthd.Forcetoresistextendingorbendingofd.Surfacetension:Surfaceenergydensity:J·m-2=(N·m)·m-2=

N·m-1:Surfacetension(forceperunitlength)Surfacetension外力外力TendtoshrinkandstretchLinetensionofdislocation:Forcetoresistextendingorbendingofd.,Tendtobeshrinkableand

straightIfadislocationiscurving,theremustbesomeblockingandexternalstress(outofthedis.).Forceond.dsactedbyshearstressτ:ResistingforceondsbylinetensionT:

,assumeThenRisinverselyproportionaltoτ.RdsABEx.ShearstressτVSradiusofcurvatureforad.withtwopointsfixedb)ABEdged.movesfromlatticepointA(a)toanotheroneB(b)

6.P-Nforce(Peirls-Nabarrostress)a)a)ABP-Nforce:resistanceofd.movementfromonelatticepointtoanotherifnotconsideranyotherforce(comefromtheattractionofatomsaboveandbelowslipplane).Theshearstresscausesthatthed.starttomovea—thedistancebetweenglideplanesb—interatomicdistanceonglidedirectionν

—Poisson’sratiow—widthofd.d.MobilityVSd.widthDiscussion:(?。ヾ.glideprefers:planewithlargestplanedistance(大a)andsmallestinteratomicdistance(小b).(ⅱ)w↑→↓→mobility↑(ⅲ)wdependsoncrystalstructureandbondtype

covalentandionic<metallicformetallic:bcc<fccorcpha—thedistancebetweenglideplanesb—interatomicdistanceonglidedirectionν

—Poisson’sratiow—widthofd.Forceond.nearinsidesurfacebysurfaceForceond.bytheimaged.outsidesurfaceElasticstrainenergyofadislocationdependsontheactiveradiusofdislocationstressfield.

Ifdislocation/surfacedistanceλ<R,

λ↓→E↓-meansthattheforcedirects

toenergydecreasing,Therefore,imageforcedirectstosurface7.Imageforce:actedbycrystalsurfaceAttractionbysurface廣義能量變化、廣義力Sincenostressonsurface,thecompositeforcefromd.andimaged.mustbezeroatsurface.FlatsurfaceReals.d.Images.d.XcrystalvacuumλYOb–bλEx.Screwd.ImageF2.Imaged.anditsattraction(近似)Samed.directionandoppositebEngineeringapplicationItisextremelyimportantforthinfilm.Wearmechanism:Sub-surfacelayerspallingoffforhard/softconterpart12PerfectdislocationStackingfaultsImperfectdislocationDislocationreaction5.ThedislocationinrealcrystalsEndClassificationofdislocationsSimplecubicb=latticeparameter

Realcrystalsb>L.P.b=L.P.b<L.P.Integer:Perfectdis.

b=L.P.Unitdis.Notinteger:Imperfectdis.

b<L.P.Partialdis.End(111)(111)B′CBbBurgersvectorofthedislocation(isequaltotheintegralmultipleof)/(isequalto)theatomicspacingalongtheslipdirection=(Perfectd.)/(Unitd.)(1)Perfect(orUnit)d.1.Concept:bccfcccph2.bforunitdislocationinmetalsEndFCCBurgersVectorsinMetalsFCCMetalWhatisthelengthofb[110]

?Letthelatticeparameterbeao

ao[110]=ao*(12+12+02)1/2=21/2

ao

TheBurgersvectorishalfthatlength:

|b

[110]|=(ao/2)[110]=(ao/2)21/2

TheBurgersvectorisusuallydenotedusingthisterminology,i.e.,

b

[110]=(ao/2)[110]a0[110]EndBurgersVectorsandSlipSysteminFCCStructures

4slipplane×3slipdirection=12slipsystemEnd(111)(111)CB′Bbbccfcccph2.bforunitdislocationinmetalsTrytowritebyyourself!EndNormalsequenceAABBCC△△△△△Trytowritebyyourself!ABCBCA△△▽△△ExtractAlayerABABCB△▽△△▽InsertB

layerGlide(a<112>/6)3.SeveralexamplesofSFinFCC(111)BCEnd

planardefectsbystackingsequenceerror(2)Stackingfaults1.Concept:Theenergyincrementresultingfromstackingfaults.Irregularstackingalthoughlatticedistortionisnegligible.SpecificSFE:SFEonaunitareaofSF.

2.StackingfaultsenergySSFE(J/m2

)

MetalsAuCo

Ni

Al

CuAg0.02

0.20

0.04

0.06

0.25

0.02

EndBurgersvectorofthedislocation(isnotequaltotheintegralmultipleof)/(islessthan)theatomicspacingalongtheslipdirection=(Imperfectd.)/(Partiald.)OnlyglideShockley

p.d.Frank

p.d.Edge,screw,mixedbd.typeMovementEdgeOnlyclimb(111)3.Imperfect(orPartial)dislocation1.Concept:2.Commonp.d.inFCCEndShockleyp.d.line3.RelationshipbetweenP.d.andS.F.P.d.isalwayslinkedtoS.F.(111)P.d.S.F.However,S.F.maybeornotbelinkedtoP.d.End

isbofd.beforereaction

isbofd.afterreactionEx.Mayitoccurspontaneously?

(1)fcc:

(2)fcc:①Geometry:②Energy:

(1)G:Ybut,no

(2)G:Yand,yes4.d.reaction1.SpontaneousconditionsEnd1)Extendedd.inFCCExam:2.Exam.ford.reactionUnitd.on{111}planeinFCCcanbeposedintotwopartialdislocationsandstackingfaultsbetweenthem.EndUnitedged.posesintoextendedd.Unitmixedd.posesintoextendedd.1)Extendedd.inFCCExam:2.Exam.ford.reactionUnitd.on{111}planeinFCCcanbeposedintotwopartialdislocationsandstackingfaultsbetweenthem.Force!End2)Equilibriumwidthofextendedd.,,,areedgeandscrewcomponentsofthetwoBurgersvectorsoftwopartialdislocations.G—shearmodulus

γ—SSFE(similarwiththesurfaceenergydensityorsurfacetension)=Equilibriumdistancebetweentwop.d.ofextendedd.Repulsionforcebetweentwopartiald.separatesthem.AttractionforcefromS.F.impedestheseparation.Theequilibriumoftherepulsionandattractionleadstotheequilibriumdistance(d0)betweenthetwopartiald.Nof:s//eEndEx.8Forfcc,shearmodulus,latticeparameter

,stackingfaultsenergy.Calculatetheequilibriumwidthofextendedd.on(111)plane.

SubstituteG,a,γ,ν=1/3Wegetd0≈3.6nm

G=4.8×1010Paa=0.36nmEnd3)EffectofS.S.F.E.onequilibriumwidthofextendedd.

S.S.F.E.↓→attraction↓→E.W.↑S.S.F.E.(J/m2

)E.W.ofE.D.(nm)MetalsAuCoNi

Al

Cu

Ag

0.02

0.20.04

0.06

35.0

2.0

12.0

0.25

1.5

0.02

5.7

10.0

S.F.E.andequilibriumwidthofextendedd.formetalsEndThompsontetrahedrona)FCCunitcellb)foldedc)unfoldedEndcccThompsontetrahedrona)FCCunitcellb)foldedc)unfoldedEndPerfectd.Shockleyp.d.Frankp.d.L-Cd.Discussion1.WhatisthedifferencebetweenthethreetypesofstackingfaultsinFCC?2.Howtoproduceedge,screwormixedShockley

partialdislocationbyslip?3.HowcanyouwriteThompsontetrahedronbyyourself?Discussion5.Howtounderstandthedefinitionofdislocation?(1)imperfectioninvolvingarowofatoms,(2)theboundarylinebetweenthepartslippedandtobeslipped.6.Couldyouproduceadislocation?Ifyes,trytodescribeit.(1)insertahalfextraplaneofatoms,(2)inserta20*20nmsquareatomplane,(3)insertahalfcylindricalplaneofatoms.(4)insertalineofatoms,(5)extractalineofatoms13Discussion144.6

PlanedefectsGrainboundary晶界

Subgrainboundary亞晶界

Twinboundary孿晶界

Phaseboundary相界

Stackingfaults堆垛層錯

Surface表面

4.6

PlanedefectsGrainboundarystructureandGBenergySurfaceandsurfaceenergyAdsorptionatsurfaceorgrainboundaryWettingMicrostructureevolutiondependenceoninterfaceenergyGrainBoundariesAgrainboundaryistheinterfacebetweentwocrystals(orgrains)ofthesamematerial,whichhavedifferentorientations(meaningthattheirlatticesdonotmatchup).GrainboundarystructureisathinlayerofatomicdisorderbetweenthetwolatticesBecauseofthelocaldisorder,atomsonthegrainboundaryhaveahigherenergythanthosewithinthegrain(justlikesurfaces)Grainboundariesalsohavea(specific)grain

boundaryenergy:gG(J/m2)GrainboundarystructureandGBenergy

Subgrainboundary:orientationdifference<10oLow-angletiltboundaryTypicalstructure:Alineofdislocationwiththesameb,informofdislocationwall.DislocationdistanceD:1.Low-angleGBstructureTwotypesoflow-angleGBLow-angletiltboundaryLow-angletwistboundaryLow-angleGBcomposedofdislocationpit

(1500×)2.NormalGBOrientationdifference>10o;GrainboundarystructureisthecomplicatedstructurewithvariousmodelsEnergyincrementresultingfromaunitareaGBGBenergyforlow-angleGB()

isaconstant,whereGisshearmodulusbisBurgersvector,visPoisonratioBisaconstantassociatedwiththeradiusofdislocationcentralareaθisorientationdifference3.晶界能3.GBenergy2)GBenergyforhigh-angleGB()

Low-angleGBenergy;Inspiteof△orientation;Nearlyaconstant;WellrelatedtoelasticmodulusE.CuGBenergyVS△orientationE(GPa)HAGBenergy(J/m2)SnNiFeCuAu40193196115770.160.690.780.600.36MetalsOtherplanedefectsTwinBoundaries(~0.02J/m2)TwinningdeformationandslidingdeformationOtherplanardefectsTwinBoundariesOtherplanedefectsPhaseBoundariesbetweenthealpha(gray)andbeta(white)phasesinTi6Al4ValloyPlanardefectsbystackingsequenceerrorSSFE(J/m2

)

MetalsAuCo

Ni

Al

CuAg0.02

0.20

0.04

0.06

0.25

0.02

EndStackingfaultNormalsequenceAABBCC△△△△△ABCBCA△△▽△△ExtractAlayerABABCB△▽△△▽InsertB

layerOtherplanedefectsStackingfaultenergy15Surfaceandsurfaceenergy

WhySurfacesAreImportantinMater.Sci.Eng.Surfacesinsolidaretheinterfacebetweenasolidanditsenvironment

Chemicalandphysicalinteractionsoccuratsurfacescorrosionphenomenaoxidationelectrochemicalreactionschemicalreactionsadsorption/desorption

Surfacescanhavecatalyticactivity

Processessuchaswelding,soldering,thinfilmdepositiondependonsurfacecleanlinessorstructure.ⅰ)Unsaturatedbondsⅱ)vanderWaalsforceCrosssectionofNaClsurface1.Atomicstructureofsurface(VSbulk)Surfaces(FreeSurfaces)Surfaceenergy(surfacetension)SupposeacrystalisfracturedcleanlytoexposetwofreshlatticeplanesWork,W,isexpendedtocleavethecrystalinhalf(strikingwithahammer,etc).ThequantityW/AistheworkrequiredtoformunitareaoffreshsurfaceThisiscalledthesurfaceenergyγs---Usuallygiventhesymbolσs

(surfacetension)

Dependsonthetypeoflatticeplaneexposed(anisotropy)/isotropyClose-packedplanestendtohavelowvaluesCrystalstendtoadoptshapesthatexposethelowγssurfacesasmuchaspossible(Anisotropycausesmanycrystalstohavefacetedpolyhedralshapes).Energyincrementresultingfromaunitareasurface

—GBenergy

E—Elasticmodulus

b—Distancebetweensurfaceatoms

2.Surfaceenergyⅰ)Mutationofnano-powderⅱ)DrivingforceofpowdersinteringTerrace-likemorphology3.SurfacemorphologyofcrystalGenerally,Close-packedplaneSecondaryCPplane4.EffectofSEonmaterialpropertySurfaces(FreeSurfaces)AtomicstructureofcrystalsurfacesdescribedbytheTerrace-Ledge-Kink(TLK)model(臺地-棱階-彎結(jié)模型)Growthordissolutionofcrystalsoftenoccursbyatomsattaching/detachingatledgeandkinksitesonthesurface.Asatomscontinuallyattach/detach,theledgeeitheradvancesorrecedesThiscausesoneterracetogroworshrinkKossel-Stranski-VolmermodelSurfaces(FreeSurfaces)107108Surfaces(FreeSurfaces)AtomicstructureofcrystalsurfacesdescribedbytheTerrace-Ledge-Kink(TLK)Model:Growthordissolutionofcrystalsoftenoccursbyatomsattaching/detachingatledgeandkinksitesonthesurface.Asatomscontinuallyattach/detach,theledgeeitheradvancesorrecedesThiscausesoneterracetogrowandanothertoshrinkFrankmodelScrewdislocationatsurfaceofSiCsinglecrystal.DarklinesaretheatomicstepsatthesurfaceScrewdislocationatsurfaceofSiCsinglecrystal.DarklinesaretheatomicstepsatthesurfaceFrankmodelJacksonmodel

Enrichmentofforeignatomsormoleculesatsurfaceorgrainboundaryⅰ)Decreasethefreeenergy,spontaneouslyⅱ)ExothermicreactionT↑desorptio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論