版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
94.4ForceondislocationForcefromexternalstressPeach-KoehlerequationForcebetweendislocationsForcebetweendislocationandsoluteatomLinetensionofdislocationLatticeresistanceofdislocationmovementImageforceZYXGEHFObBCDAEx.1Inacubiccrystal,asquaredislocationloopABCD,itsslipplaneEFGH∥bothbases.AB∥EF,Burgersvectorb⊥AB.Shearstressτ∥bonbothbases.JudgetheDis.typeanddirectionofmovementofeachsectionofdislocation.DA:gliding,directionXCD:gliding,directionYBC:gliding,direction-XAB:gliding,direction-YAnswer:Imagineaforceexist!Itsdirection=dis.motiondirec.Whydoesthedis.move?Directionofdis.motionVSτ?Deformationwork=
virtualworkbythevirtualforceondislocationThenweget(1)、Forcefromexternalstress1.CalculationbyvirtualworkprincipleAttention:thefistheforceperunitlength
Discussion(1)Foredged.,thestressrefersto(a)shearstressonaplane//slipplaneandadirection//b;
(b)normalstressonaplane//halfatomicplaneandadirection//b(a)glide(b)climb(3)Thevirtualforce┴dislocationline,sameasmovementofdislocationline(2)Forscrewd.,thestressreferstoshearstressonaplane//slipplaneandadirection//b
Calculatetheforceonadislocationofaunitlengthactedbyastressfield.(2)、Peach-Koehlerequation1.ApplicationofPeach-Koehlerequation2.Peach-Koehlerequation
isstressfieldisBurgersvectorisunitdirectionvectorofdislocationline
3.Peach-Koehlerequation
3.Peach-KoehlerequationEx.2,squared.loopABCDinacubiccrystal,glideplaneEFGH//baseplane,AB∥EF,
b⊥AB,τ
∥b,τisactedonthebases.Forceonaunitlengthd.line?ZYXGEHFOBCDAbDA:gliding,direction-XCD:gliding,direction-YBC:gliding,directionXAB:gliding,directionYf=τbEx.3,squared.loopABCDinacubiccrystal,glideplaneEFGH//baseplane,AB∥EF,
b⊥AB,τ∥b,τisactedonthefrontandbacksides.Forceonaunitlengthd.line?ZYXGEHFOBCDAb???bEx.4
Apositiveedged.withbinacubiccrystal,slipplane//baseplane.ifτ∥b,τisactedonthebases.forceonaunitlengthd.line?
=τbj
Assumethat:ThenWeget
2.CalculationbyPeach-KoehlerequationZYXEx.5
Apositiveedged.withbinacubiccrystal,slipplane//baseplane.ifτ∥b,τisactedonthefrontandbacksides.forceonaunitlengthd.line?2.CalculationbyPeach-KoehlerequationAB:noBC:τb,//ZCD:noDA:τb,//-ZEx.6Arightscrewd.inacubiccrystal,b//baseplane.Ifτisactedonbaseplanes,forming45°withb,forceonaunitlengthd.line?AssumeThenWeget
ZYXHowtounderstandthedirectionaldisagreementbetweenexternalstressanddislocationmotion/force?Foredgedislocation,theyareconsistent.Forscrewdislocation,theyarevertical!Wecanimaginethatthisedgedislocationisthedirectresultofthestress,andthescrewdislocationistheresultoftheedgedislocationsweeping.Anedgedislocationisformedbeforetheformationofascrewdislocation.E.D.VSS.D.EndEnd10
—Stressfieldresultingfromd.1(locatedongridorigin)
—Burgersvectorofd.2
—Unitdirectionvectorofd.2(3)、ForcebetweendislocationsUsingPeach-Koehlerequation(右手直角坐標系)db1b2d.1d.2Discussthedb1b2d.1d.21.Forcebetweentwo//screwd.Rightscrewdis.DACBb(2)Rectangularcoordinatesystemdb1b2d.1d.21.Forcebetweentwo//screwd.Repulsionforlikescrewd.,forunlikescrewd.?ZYoutsideXHowtounderstandtheinteractionbetweentwoscrewdislocations?Dislocation1producesacertaindistortion,leadingtoastressfield/strainenergy.Dis.2tendstofurtherchangethedistortion,leadingtochangethestressfield/strainenergy.Discussion:Howaboutthedifficultytoproducetheseconddislocationnearthefirstone?LikeVSUnlike?Engineeringapplication!Whydenselydistributeddislocationstorestricttheplasticdeformation?d2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1bisnotcontained.d2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1YisoutsidescreenTheny=0plane.ZYoutsideXy=0x=-dd2.Forcefortwo//edged.onsameglideplaneb1b2d.2d.1Repulsionforlikee.d.,attractionforunlikee.d.YisoutsidescreenTheny=0plane.ZYoutsideXdb1b2d.1d.23.Noforcebetweenedged.//screwd.YisoutsidescreenTheny=0plane.ZYoutsideX(θ)ⅠⅡb2b1θXrOY4.Ffortwo//edged.ontwo//glideplanePositivezaxis:outsidescreen(x,y)a)Liked.YXb)Unliked.XYGenerally,fy>fx,likedis.tendtodepartandformdis.wallresultinginlowgrainboundary(thengrainrefinement).Ex.6d.1//d.2locatedatadistanceofd,theincludedangleforb1/b2isπ/4,forceonaunitlengthd.2line?Positivezaxis:outsidescreenEx.6d.1//d.2locatedatadistanceofd,theincludedangleforb1/b2isπ/4,forceonaunitlengthd.2line?Positivezaxis:outsidescreenEx.7d.(AB)andd.(CD):locatedfromd,┴butnotcoplanar.|b1|=|b2|=b.Calculate:(1)forceonaunitlengthd.(CD),(2)totalforceond.(CD),(3)totaltorqueond.(CD),(4)resultantmovement.
fordifferentd.combinations.
(a)twoscrewd.(b)twoedged.
(c)edgeandscrew(1)twoscrew
f=(σ·b2)×l02
f=(σ·b2)×l02(2)twoedge
f=(σ·b2)×l02(3)edgeandscrewDiscussion(1)Thereareattractionandrepulsionbetweendislocations.Foreachsectionofadislocation,therearethedifferentinteractions/forces(orzeroatsomepoint)(2)Theinteractiontendstomovedislocations,wesupposethatthemovementresultsfromthevirtualforces.(3)Theinteractiontendstodecreasethesystemenergy.11XYMakeapore(radiusr0)inanelasticsolid,thenputarigidsphere(radiusr1)intothepore.AworkWisactedbythenormalstressofthedislocationbyresistingorpromotingtheprocess.1)Cottrellatmosphereisdegreeofmisfit(4)Forcebetweendislocationandimpurityatom1.Elasticinteraction:d.VSsoluteisaveragenormalstressattherigidsphereForsolidsolutionalloy,oneimpurityatomisarigidsphere.Assumethattheinteractionenergybetweenimpurityatomandd.isE.Then為何取負:對外做功則能量降低Isoenergeticline(dashed)andforceline(solid)fortheinteractionbetweenedged.andimpurity(interstitialatomsorlargesubstitutionalatoms)XYForinterstitialatomsandlargesubstitutionalatoms,β>0.Tominimizeenergy,theytendtosegregatejustbelowdislocationXYIsoenergeticline(dashed)andforceline(solid)fortheinteractionbetweenedged.andimpurity(smallsubstitutionalatoms)Forsmallsubstitutionalatoms,β<0Tominimizeenergy,theytendtosegregatejustabovedislocation.Cottrellatmosphere:theimpurityatomssegregatedaroundtheedgedislocation.
TheypresentBoltzmannconcentrationdistribution
—averageconcentrationofimpurity
—temperature
—BoltzmannconstantNote:Cottrellatmospherecanimpededislocationmovementbypinningdislocation.EngineeringapplicationSharpyieldpointinstress-straincurveStrainaging:timeandtemperaturedependentBCC;C/N/O2)Snoekatmosphere
Soluteatomsregularlylocatedaroundscrewd.duetothenonsphericalsymmetrydistortionofcrystallattice.Itcanimpededislocationmovement.Inmetal,electrostaticdipolecanbeformedduetothemovementoffreeelectronsfromcompressivestressregiontotensilestressregionaroundd..Itchangestheconcentrationdistributionofsoluteatomwithdifferentelectronvalencefromsolventatomsintheregionnearslipplaneofanedged..ChargedjogSlipplane2.Electrostaticinteraction:d.VSsoluteInionicsolid,theconcentrationdistributionofsoluteionsischangedby:theelectrostaticinteractionbetweenthechargedjog
ofedged.andthechargedsolute.Thereischemicalinteractionbetweensoluteatomsandthestackingfaultsofextendedd.Itresultsinthedifferentconcentrationfromthatinbulkaroundthestackingfaultsareaofextendeddislocation.Suzukiatmosphere:theconcentratedsoluteatomsinthestackingfaultsofextendeddislocation.Itimpedesthedislocationmovement.
3.Chemicalinteraction:d.VSsoluteSoluteconcentrationinstackingfaultsC1MeansoluteconcentrationC0>
5.Linetensionofd.LinetensionLineenergydensity:J·m-1=(N·m)·m-1=
N:Linetension(force)Equaltostrainenergyperunitlengthd.Forcetoresistextendingorbendingofd.Surfacetension:Surfaceenergydensity:J·m-2=(N·m)·m-2=
N·m-1:Surfacetension(forceperunitlength)Surfacetension外力外力TendtoshrinkandstretchLinetensionofdislocation:Forcetoresistextendingorbendingofd.,Tendtobeshrinkableand
straightIfadislocationiscurving,theremustbesomeblockingandexternalstress(outofthedis.).Forceond.dsactedbyshearstressτ:ResistingforceondsbylinetensionT:
,assumeThenRisinverselyproportionaltoτ.RdsABEx.ShearstressτVSradiusofcurvatureforad.withtwopointsfixedb)ABEdged.movesfromlatticepointA(a)toanotheroneB(b)
6.P-Nforce(Peirls-Nabarrostress)a)a)ABP-Nforce:resistanceofd.movementfromonelatticepointtoanotherifnotconsideranyotherforce(comefromtheattractionofatomsaboveandbelowslipplane).Theshearstresscausesthatthed.starttomovea—thedistancebetweenglideplanesb—interatomicdistanceonglidedirectionν
—Poisson’sratiow—widthofd.d.MobilityVSd.widthDiscussion:(?。ヾ.glideprefers:planewithlargestplanedistance(大a)andsmallestinteratomicdistance(小b).(ⅱ)w↑→↓→mobility↑(ⅲ)wdependsoncrystalstructureandbondtype
covalentandionic<metallicformetallic:bcc<fccorcpha—thedistancebetweenglideplanesb—interatomicdistanceonglidedirectionν
—Poisson’sratiow—widthofd.Forceond.nearinsidesurfacebysurfaceForceond.bytheimaged.outsidesurfaceElasticstrainenergyofadislocationdependsontheactiveradiusofdislocationstressfield.
Ifdislocation/surfacedistanceλ<R,
λ↓→E↓-meansthattheforcedirects
toenergydecreasing,Therefore,imageforcedirectstosurface7.Imageforce:actedbycrystalsurfaceAttractionbysurface廣義能量變化、廣義力Sincenostressonsurface,thecompositeforcefromd.andimaged.mustbezeroatsurface.FlatsurfaceReals.d.Images.d.XcrystalvacuumλYOb–bλEx.Screwd.ImageF2.Imaged.anditsattraction(近似)Samed.directionandoppositebEngineeringapplicationItisextremelyimportantforthinfilm.Wearmechanism:Sub-surfacelayerspallingoffforhard/softconterpart12PerfectdislocationStackingfaultsImperfectdislocationDislocationreaction5.ThedislocationinrealcrystalsEndClassificationofdislocationsSimplecubicb=latticeparameter
Realcrystalsb>L.P.b=L.P.b<L.P.Integer:Perfectdis.
b=L.P.Unitdis.Notinteger:Imperfectdis.
b<L.P.Partialdis.End(111)(111)B′CBbBurgersvectorofthedislocation(isequaltotheintegralmultipleof)/(isequalto)theatomicspacingalongtheslipdirection=(Perfectd.)/(Unitd.)(1)Perfect(orUnit)d.1.Concept:bccfcccph2.bforunitdislocationinmetalsEndFCCBurgersVectorsinMetalsFCCMetalWhatisthelengthofb[110]
?Letthelatticeparameterbeao
ao[110]=ao*(12+12+02)1/2=21/2
ao
TheBurgersvectorishalfthatlength:
|b
[110]|=(ao/2)[110]=(ao/2)21/2
TheBurgersvectorisusuallydenotedusingthisterminology,i.e.,
b
[110]=(ao/2)[110]a0[110]EndBurgersVectorsandSlipSysteminFCCStructures
4slipplane×3slipdirection=12slipsystemEnd(111)(111)CB′Bbbccfcccph2.bforunitdislocationinmetalsTrytowritebyyourself!EndNormalsequenceAABBCC△△△△△Trytowritebyyourself!ABCBCA△△▽△△ExtractAlayerABABCB△▽△△▽InsertB
layerGlide(a<112>/6)3.SeveralexamplesofSFinFCC(111)BCEnd
planardefectsbystackingsequenceerror(2)Stackingfaults1.Concept:Theenergyincrementresultingfromstackingfaults.Irregularstackingalthoughlatticedistortionisnegligible.SpecificSFE:SFEonaunitareaofSF.
2.StackingfaultsenergySSFE(J/m2
)
MetalsAuCo
Ni
Al
CuAg0.02
0.20
0.04
0.06
0.25
0.02
EndBurgersvectorofthedislocation(isnotequaltotheintegralmultipleof)/(islessthan)theatomicspacingalongtheslipdirection=(Imperfectd.)/(Partiald.)OnlyglideShockley
p.d.Frank
p.d.Edge,screw,mixedbd.typeMovementEdgeOnlyclimb(111)3.Imperfect(orPartial)dislocation1.Concept:2.Commonp.d.inFCCEndShockleyp.d.line3.RelationshipbetweenP.d.andS.F.P.d.isalwayslinkedtoS.F.(111)P.d.S.F.However,S.F.maybeornotbelinkedtoP.d.End
isbofd.beforereaction
isbofd.afterreactionEx.Mayitoccurspontaneously?
(1)fcc:
(2)fcc:①Geometry:②Energy:
(1)G:Ybut,no
(2)G:Yand,yes4.d.reaction1.SpontaneousconditionsEnd1)Extendedd.inFCCExam:2.Exam.ford.reactionUnitd.on{111}planeinFCCcanbeposedintotwopartialdislocationsandstackingfaultsbetweenthem.EndUnitedged.posesintoextendedd.Unitmixedd.posesintoextendedd.1)Extendedd.inFCCExam:2.Exam.ford.reactionUnitd.on{111}planeinFCCcanbeposedintotwopartialdislocationsandstackingfaultsbetweenthem.Force!End2)Equilibriumwidthofextendedd.,,,areedgeandscrewcomponentsofthetwoBurgersvectorsoftwopartialdislocations.G—shearmodulus
γ—SSFE(similarwiththesurfaceenergydensityorsurfacetension)=Equilibriumdistancebetweentwop.d.ofextendedd.Repulsionforcebetweentwopartiald.separatesthem.AttractionforcefromS.F.impedestheseparation.Theequilibriumoftherepulsionandattractionleadstotheequilibriumdistance(d0)betweenthetwopartiald.Nof:s//eEndEx.8Forfcc,shearmodulus,latticeparameter
,stackingfaultsenergy.Calculatetheequilibriumwidthofextendedd.on(111)plane.
SubstituteG,a,γ,ν=1/3Wegetd0≈3.6nm
G=4.8×1010Paa=0.36nmEnd3)EffectofS.S.F.E.onequilibriumwidthofextendedd.
S.S.F.E.↓→attraction↓→E.W.↑S.S.F.E.(J/m2
)E.W.ofE.D.(nm)MetalsAuCoNi
Al
Cu
Ag
0.02
0.20.04
0.06
35.0
2.0
12.0
0.25
1.5
0.02
5.7
10.0
S.F.E.andequilibriumwidthofextendedd.formetalsEndThompsontetrahedrona)FCCunitcellb)foldedc)unfoldedEndcccThompsontetrahedrona)FCCunitcellb)foldedc)unfoldedEndPerfectd.Shockleyp.d.Frankp.d.L-Cd.Discussion1.WhatisthedifferencebetweenthethreetypesofstackingfaultsinFCC?2.Howtoproduceedge,screwormixedShockley
partialdislocationbyslip?3.HowcanyouwriteThompsontetrahedronbyyourself?Discussion5.Howtounderstandthedefinitionofdislocation?(1)imperfectioninvolvingarowofatoms,(2)theboundarylinebetweenthepartslippedandtobeslipped.6.Couldyouproduceadislocation?Ifyes,trytodescribeit.(1)insertahalfextraplaneofatoms,(2)inserta20*20nmsquareatomplane,(3)insertahalfcylindricalplaneofatoms.(4)insertalineofatoms,(5)extractalineofatoms13Discussion144.6
PlanedefectsGrainboundary晶界
Subgrainboundary亞晶界
Twinboundary孿晶界
Phaseboundary相界
Stackingfaults堆垛層錯
Surface表面
4.6
PlanedefectsGrainboundarystructureandGBenergySurfaceandsurfaceenergyAdsorptionatsurfaceorgrainboundaryWettingMicrostructureevolutiondependenceoninterfaceenergyGrainBoundariesAgrainboundaryistheinterfacebetweentwocrystals(orgrains)ofthesamematerial,whichhavedifferentorientations(meaningthattheirlatticesdonotmatchup).GrainboundarystructureisathinlayerofatomicdisorderbetweenthetwolatticesBecauseofthelocaldisorder,atomsonthegrainboundaryhaveahigherenergythanthosewithinthegrain(justlikesurfaces)Grainboundariesalsohavea(specific)grain
boundaryenergy:gG(J/m2)GrainboundarystructureandGBenergy
Subgrainboundary:orientationdifference<10oLow-angletiltboundaryTypicalstructure:Alineofdislocationwiththesameb,informofdislocationwall.DislocationdistanceD:1.Low-angleGBstructureTwotypesoflow-angleGBLow-angletiltboundaryLow-angletwistboundaryLow-angleGBcomposedofdislocationpit
(1500×)2.NormalGBOrientationdifference>10o;GrainboundarystructureisthecomplicatedstructurewithvariousmodelsEnergyincrementresultingfromaunitareaGBGBenergyforlow-angleGB()
isaconstant,whereGisshearmodulusbisBurgersvector,visPoisonratioBisaconstantassociatedwiththeradiusofdislocationcentralareaθisorientationdifference3.晶界能3.GBenergy2)GBenergyforhigh-angleGB()
Low-angleGBenergy;Inspiteof△orientation;Nearlyaconstant;WellrelatedtoelasticmodulusE.CuGBenergyVS△orientationE(GPa)HAGBenergy(J/m2)SnNiFeCuAu40193196115770.160.690.780.600.36MetalsOtherplanedefectsTwinBoundaries(~0.02J/m2)TwinningdeformationandslidingdeformationOtherplanardefectsTwinBoundariesOtherplanedefectsPhaseBoundariesbetweenthealpha(gray)andbeta(white)phasesinTi6Al4ValloyPlanardefectsbystackingsequenceerrorSSFE(J/m2
)
MetalsAuCo
Ni
Al
CuAg0.02
0.20
0.04
0.06
0.25
0.02
EndStackingfaultNormalsequenceAABBCC△△△△△ABCBCA△△▽△△ExtractAlayerABABCB△▽△△▽InsertB
layerOtherplanedefectsStackingfaultenergy15Surfaceandsurfaceenergy
WhySurfacesAreImportantinMater.Sci.Eng.Surfacesinsolidaretheinterfacebetweenasolidanditsenvironment
Chemicalandphysicalinteractionsoccuratsurfacescorrosionphenomenaoxidationelectrochemicalreactionschemicalreactionsadsorption/desorption
Surfacescanhavecatalyticactivity
Processessuchaswelding,soldering,thinfilmdepositiondependonsurfacecleanlinessorstructure.ⅰ)Unsaturatedbondsⅱ)vanderWaalsforceCrosssectionofNaClsurface1.Atomicstructureofsurface(VSbulk)Surfaces(FreeSurfaces)Surfaceenergy(surfacetension)SupposeacrystalisfracturedcleanlytoexposetwofreshlatticeplanesWork,W,isexpendedtocleavethecrystalinhalf(strikingwithahammer,etc).ThequantityW/AistheworkrequiredtoformunitareaoffreshsurfaceThisiscalledthesurfaceenergyγs---Usuallygiventhesymbolσs
(surfacetension)
Dependsonthetypeoflatticeplaneexposed(anisotropy)/isotropyClose-packedplanestendtohavelowvaluesCrystalstendtoadoptshapesthatexposethelowγssurfacesasmuchaspossible(Anisotropycausesmanycrystalstohavefacetedpolyhedralshapes).Energyincrementresultingfromaunitareasurface
—GBenergy
E—Elasticmodulus
b—Distancebetweensurfaceatoms
2.Surfaceenergyⅰ)Mutationofnano-powderⅱ)DrivingforceofpowdersinteringTerrace-likemorphology3.SurfacemorphologyofcrystalGenerally,Close-packedplaneSecondaryCPplane4.EffectofSEonmaterialpropertySurfaces(FreeSurfaces)AtomicstructureofcrystalsurfacesdescribedbytheTerrace-Ledge-Kink(TLK)model(臺地-棱階-彎結(jié)模型)Growthordissolutionofcrystalsoftenoccursbyatomsattaching/detachingatledgeandkinksitesonthesurface.Asatomscontinuallyattach/detach,theledgeeitheradvancesorrecedesThiscausesoneterracetogroworshrinkKossel-Stranski-VolmermodelSurfaces(FreeSurfaces)107108Surfaces(FreeSurfaces)AtomicstructureofcrystalsurfacesdescribedbytheTerrace-Ledge-Kink(TLK)Model:Growthordissolutionofcrystalsoftenoccursbyatomsattaching/detachingatledgeandkinksitesonthesurface.Asatomscontinuallyattach/detach,theledgeeitheradvancesorrecedesThiscausesoneterracetogrowandanothertoshrinkFrankmodelScrewdislocationatsurfaceofSiCsinglecrystal.DarklinesaretheatomicstepsatthesurfaceScrewdislocationatsurfaceofSiCsinglecrystal.DarklinesaretheatomicstepsatthesurfaceFrankmodelJacksonmodel
Enrichmentofforeignatomsormoleculesatsurfaceorgrainboundaryⅰ)Decreasethefreeenergy,spontaneouslyⅱ)ExothermicreactionT↑desorptio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)化道路貨物托運協(xié)議2024版版B版
- 三方債務(wù)責任轉(zhuǎn)移具體協(xié)議示例版A版
- 2025年度不良資產(chǎn)投資并購項目盡職調(diào)查與風險評估合同3篇
- 2025年度網(wǎng)約車租賃服務(wù)合同樣本3篇
- 《超市店長培訓(xùn)》課件
- 手表產(chǎn)品知識培訓(xùn)課件
- 2024項目管理流程優(yōu)化與綠色物流體系建設(shè)合同范本3篇
- 2025年度汽車零部件研發(fā)與制造一體化合同3篇
- 中醫(yī)理論知識培訓(xùn)課件
- 2025年度跨境電商平臺入駐運營合同3篇
- (八省聯(lián)考)2025年高考綜合改革適應(yīng)性演練 物理試卷合集(含答案逐題解析)
- 2025年安徽銅陵市公安局第二批輔警招聘158人歷年高頻重點提升(共500題)附帶答案詳解
- 車間修繕合同模板
- 商會年會策劃方案范例(3篇)
- SQE年終總結(jié)報告
- 【高考語文】2024年全國高考新課標I卷-語文試題評講
- 《化學實驗室安全》課程教學大綱
- 2024年人教版初二地理上冊期末考試卷(附答案)
- 2024文旅景區(qū)秋季稻田豐收節(jié)稻花香里 說豐年主題活動策劃方案
- 高低壓供配電設(shè)備檢查和檢修保養(yǎng)合同3篇
- 2023-2024學年福建省廈門市八年級(上)期末物理試卷
評論
0/150
提交評論