2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第1頁
2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第2頁
2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第3頁
2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第4頁
2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省日照市莒縣一中數(shù)學(xué)高二第二學(xué)期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某校高中三個年級人數(shù)餅圖如圖所示,按年級用分層抽樣的方法抽取一個樣本,已知樣本中高一年級學(xué)生有8人,則樣本容量為()A.24 B.30 C.32 D.352.若函數(shù)在為增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.已知O為坐標(biāo)原點,雙曲線C:的右焦點為F,焦距為,C的一條漸近線被以F為圓心,OF為半徑的圓F所截得的弦長為2,則C的方程是()A. B. C. D.4.已知離散型隨機變量的分布列為則的數(shù)學(xué)期望為()A. B. C. D.5.歐拉公式:為虛數(shù)單位),由瑞士數(shù)學(xué)家歐拉發(fā)明,它建立了三角函數(shù)與指數(shù)函數(shù)的關(guān)系,根據(jù)歐拉公式,()A.1 B. C. D.6.已知函數(shù)的導(dǎo)數(shù)是,若,都有成立,則()A. B.C. D.7.函數(shù)在處的切線與雙曲線的一條漸近線平行,則雙曲線的離心率是()A. B. C. D.8.已知某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為()A. B. C. D.9.已知為非零不共線向量,設(shè)條件,條件對一切,不等式恒成立,則是的()A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分也不必要條件10.過點的直線與函數(shù)的圖象交于,兩點,為坐標(biāo)原點,則()A. B. C.10 D.2011.設(shè)、、,,,,則、、三數(shù)()A.都小于 B.至少有一個不大于C.都大于 D.至少有一個不小于12.設(shè)fx=sinxcosA.12 B.32 C.-二、填空題:本題共4小題,每小題5分,共20分。13.給出下列幾個命題:①三點確定一個平面;②一個點和一條直線確定一個平面;③垂直于同一直線的兩直線平行;④平行于同一直線的兩直線平行.其中正確命題的序號是____.14.為了了解家庭月收入(單位:千元)與月儲蓄(單位:千元)的關(guān)系,從某居民區(qū)隨機抽取10個家庭,根據(jù)測量數(shù)據(jù)的散點圖可以看出與之間具有線性相關(guān)關(guān)系,其回歸直線方程為,若該居民區(qū)某家庭月收入為7千元,據(jù)此估計該家庭的月儲蓄為__________千元.15.設(shè)函數(shù),.若,且的最小值為-1,則實數(shù)的值為__________.16.設(shè)函數(shù),則_________;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角所對的邊分別為,已知的面積為.(1)求和的值;(2)求的值.18.(12分)甲、乙兩種不同規(guī)格的產(chǎn)品,其質(zhì)量按測試指標(biāo)分?jǐn)?shù)進行劃分,其中分?jǐn)?shù)不小于82分的為合格品,否則為次品.現(xiàn)隨機抽取兩種產(chǎn)品各100件進行檢測,其結(jié)果如下:測試指標(biāo)分?jǐn)?shù)甲產(chǎn)品81240328乙產(chǎn)品71840296(1)根據(jù)以上數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異?甲產(chǎn)品乙產(chǎn)品合計合格品次品合計(2)已知生產(chǎn)1件甲產(chǎn)品,若為合格品,則可盈利40元,若為次品,則虧損5元;生產(chǎn)1件乙產(chǎn)品,若為合格品,則可盈利50元,若為次品,則虧損10元.記為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機變量的分布列和數(shù)學(xué)期望(將產(chǎn)品的合格率作為抽檢一件這種產(chǎn)品為合格品的概率).附:0.150.100.050.0250.0100.0050.0012.7022.7063.8415.0246.6357.87910.82819.(12分)(1)已知,都是正數(shù),并且,求證:;(2)若,都是正實數(shù),且,求證:與中至少有一個成立.20.(12分)在中,內(nèi)角所對的邊分別為,且.(1)求角;(2)若,的面積為,求的值.21.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點為極點,軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.22.(10分)已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點,平行于的直線在軸上的截距為,交橢圓于兩個不同點.(1)求橢圓的標(biāo)準(zhǔn)方程以及的取值范圍;(2)求證直線與軸始終圍成一個等腰三角形.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】分析:本題考查的知識點是分層抽樣,根據(jù)分層抽樣的方法,由樣本中高一年級學(xué)生有8人,所占比例為25%,即可計算.詳解:由分層抽樣的方法可設(shè)樣本中有高中三個年級學(xué)生人數(shù)為x人,則,解得:.故選:C.點睛:分層抽樣的方法步驟為:首先確定分層抽取的個數(shù),分層后,各層的抽取一定要考慮到個體數(shù)目,選取不同的抽樣方法,但一定要注意按比例抽取,其中按比例是解決本題的關(guān)鍵.2、A【解題分析】

利用函數(shù)的導(dǎo)函數(shù)在區(qū)間恒為非負(fù)數(shù)列不等式,用分離常數(shù)法求得的取值范圍.【題目詳解】依題意,在區(qū)間上恒成立,即,當(dāng)時,,故,在時為遞增函數(shù),其最大值為,故.所以選A.【題目點撥】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)單調(diào)性有關(guān)的問題,考查正切函數(shù)的單調(diào)性,屬于中檔題.3、A【解題分析】

根據(jù)點到直線的距離公式,可求出點F到漸近線的距離剛好為,由圓的知識列出方程,通過焦距為,求出,即可得到雙曲線方程.【題目詳解】為坐標(biāo)原點,雙曲線的右焦點為,焦距為,可得,的一條漸近線被以為圓心,為半徑的圓所截得的弦長為2,因為點F到漸近線的距離剛好為,所以可得即有,則,所以雙曲線方程為:.故選.【題目點撥】本題主要考查雙曲線的簡單性質(zhì)的應(yīng)用以及雙曲線方程的求法,意在考查學(xué)生的數(shù)學(xué)運算能力.4、B【解題分析】

根據(jù)數(shù)學(xué)期望公式可計算出的值.【題目詳解】由題意可得,故選B.【題目點撥】本題考查離散型隨機變量數(shù)學(xué)期望的計算,意在考查對數(shù)學(xué)期望公式的理解和應(yīng)用,考查計算能力,屬于基礎(chǔ)題.5、B【解題分析】

由題意將復(fù)數(shù)的指數(shù)形式化為三角函數(shù)式,再由復(fù)數(shù)的運算化簡即可得答案.【題目詳解】由得故選B.【題目點撥】本題考查歐拉公式的應(yīng)用,考查三角函數(shù)值的求法與復(fù)數(shù)的化簡求值,是基礎(chǔ)題.6、D【解題分析】分析:由題意構(gòu)造函數(shù),結(jié)合函數(shù)的單調(diào)性整理計算即可求得最終結(jié)果.詳解:令,則:,由,都有成立,可得在區(qū)間內(nèi)恒成立,即函數(shù)是區(qū)間內(nèi)單調(diào)遞減,據(jù)此可得:,即,則.本題選擇D選項.點睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問題從表面上看似乎與函數(shù)的單調(diào)性無關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調(diào)性進行全面、準(zhǔn)確的認(rèn)識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構(gòu)造一個適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.7、D【解題分析】

計算函數(shù)在處的切線斜率,根據(jù)斜率計算離心率.【題目詳解】切線與一條漸近線平行故答案選D【題目點撥】本題考查了切線方程,漸近線,離心率,屬于常考題型.8、D【解題分析】由題設(shè)中提供的三視圖中的圖形信息與數(shù)據(jù)信息可知該幾何體是一個底面是邊長分別為3,3,4的等腰三角形,高是4的三棱錐,如圖,將其拓展成三棱柱,由于底面三角形是等腰三角形,所以頂角的余弦為,則,底面三角形的外接圓的半徑,則三棱錐的外接球的半徑,其表面積,應(yīng)選答案D。9、C【解題分析】

條件M:條件N:對一切,不等式成立,化為:進而判斷出結(jié)論.【題目詳解】條件M:.

條件N:對一切,不等式成立,化為:.

因為,,,即,可知:由M推出N,反之也成立.

故選:C.【題目點撥】本題考查了向量數(shù)量積運算性質(zhì)、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.10、D【解題分析】

判斷函數(shù)的圖象關(guān)于點P對稱,得出過點的直線與函數(shù)的圖象交于A,B兩點時,得出A,B兩點關(guān)于點P對稱,則有,再計算的值.【題目詳解】,∴函數(shù)的圖象關(guān)于點對稱,∴過點的直線與函數(shù)的圖象交于A,B兩點,且A,B兩點關(guān)于點對稱,∴,則.故選D.【題目點撥】本題主要考查了函數(shù)的對稱性,以及平面向量的數(shù)量積運算問題,是中檔題.11、D【解題分析】

利用基本不等式計算出,于此可得出結(jié)論.【題目詳解】由基本不等式得,當(dāng)且僅當(dāng)時,等號成立,因此,若、、三數(shù)都小于,則與矛盾,即、、三數(shù)至少有一個不小于,故選D.【題目點撥】本題考查了基本不等式的應(yīng)用,考查反證法的基本概念,解題的關(guān)鍵就是利用基本不等式求最值,考查分析問題和解決問題的能力,屬于中等題.12、A【解題分析】

曲線在點π6,fπ【題目詳解】∵f∴f【題目點撥】本題考查函數(shù)求導(dǎo)及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、④【解題分析】分析:由三點可能共線可判斷①錯;由點可能在直線上可判斷②錯;由兩直線可能相交、異面判斷③錯;根據(jù)公理可判定④正確.詳解:①不共線的三點確定一個平面,故①錯誤;②一條直線和直線外一點確定一個平面,故②錯誤;③垂直于同一直線的兩直線相交、平行或異面,故③錯誤;④平行于同一直線的兩直線平行,故④正確,故答案為④.點睛:本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面的基本性質(zhì)及推理的合理運用.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.14、【解題分析】

直接代入即得答案.【題目詳解】由于,代入,于是得到,故答案為1.7.【題目點撥】本題主要考查線性回歸方程的理解,難度很小.15、2【解題分析】分析:先表示函數(shù),再利用導(dǎo)數(shù)求函數(shù)最小值,最后根據(jù)的最小值為-1得實數(shù)的值.詳解:因為,設(shè),則所以因為,所以當(dāng)時,;當(dāng)時,;即當(dāng)時,.點睛:兩函數(shù)關(guān)系問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式或方程,從而求出參數(shù)的取值范圍或值.16、【解題分析】

先結(jié)合分段函數(shù)的解析式計算,代入可求出的值.【題目詳解】由題意可知,,因此,,故答案為.【題目點撥】本題考查分段函數(shù)求值,在計算多層函數(shù)值時,遵循由內(nèi)到外逐層計算,同時要注意自變量的取值,選擇合適的解析式進行計算,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解題分析】

(1)由面積公式可得結(jié)合可求得解得再由余弦定理求得a=8.最后由正弦定理求sinC的值;(2)直接展開求值.【題目詳解】(1)△ABC中,由得由,得又由解得由,可得a=8.由,得.(2),【題目點撥】本題主要考查三角變換及正弦定理、余弦定理等基礎(chǔ)知識,考查基本運算求解能力.18、(1)沒有(2)的分布列見解析,【解題分析】試題分析:(1)由題意完成列聯(lián)表,然后計算可得,則沒有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異(2)X可能取值為90,45,30,-15,據(jù)此依據(jù)概率求得分布列,結(jié)合分布列可求得數(shù)學(xué)期望.試題解析:(1)列聯(lián)表如下:甲產(chǎn)品乙產(chǎn)品合計合格品8075155次品202545合計100100200∴沒有的有把握認(rèn)為兩種產(chǎn)品的質(zhì)量有明顯差異(2)依題意,生產(chǎn)一件甲,乙產(chǎn)品為合格品的概率分別為,隨機變量可能取值為90,45,30,-15,904530-15的分布列為:∴19、(1)詳見解析;(2)詳見解析.【解題分析】

(1)利用綜合法,將兩式做差,化簡整理,即可證明(2)利用反證法,先假設(shè)原命題不成立,再推理證明,得出矛盾,即得原命題成立?!绢}目詳解】(1)因為,都是正數(shù),所以,又,所以,所以,所以,即.(2)假設(shè)和都不成立,即和同時成立.且,,.兩式相加得,即.此與已知條件相矛盾,和中至少有一個成立.【題目點撥】本題主要考查綜合法和反證法證明,其中用反證法證明時,要從否定結(jié)論開始,經(jīng)過正確的推理,得出矛盾,即假設(shè)不成立,原命題成立,進而得證。20、(1);(2)【解題分析】

(1)可通過化簡計算出的值,然后解出的值。(2)可通過計算和的值來計算的值?!绢}目詳解】(1)由得,又,所以,得,所以。(2)由的面積為及得,即,又,從而由余弦定理得,所以,所以?!绢}目點撥】本題考察的是對解三角函數(shù)的綜合運用,需要對相關(guān)的公式有著足夠的了解。21、(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解題分析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.22、(1)(2)見解析.【解題分析】(1)設(shè)橢圓方程為則∴橢圓方程∵直線l平行于OM,且在軸上的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論