北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

北京市第四中學(xué)2023-2024學(xué)年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形2.如圖,在中,,則等于()A. B. C. D.3.把拋物線向右平移個單位,再向下平移個單位,即得到拋物線()A.y=-(x+2)2+3 B.y=-(x-2)2+3 C.y=-(x+2)2-3 D.y=-(x-2)2-34.如圖,矩形紙片ABCD中,AB=4,AD=3,折疊紙片使AD邊落在對角線BD上,點A落在點A'處,折痕為DG,求AG的長為()A.1.5 B.2 C.2.5 D.35.剪紙是中國特有的民間藝術(shù).以下四個剪紙圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.方程x2=3x的解為()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=37.下列運算中正確的是()A.a(chǎn)2÷a=a B.3a2+2a2=5a4C.(ab2)3=ab5 D.(a+b)2=a2+b28.如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F.P是⊙A上一點,且∠EPF=40°,則圖中陰影部分的面積是()A.4- B.4- C.8- D.8-9.如圖,點O為平面直角坐標(biāo)系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O(shè)為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標(biāo)為()A.(-2,2) B.(-2,4) C.(-2,2) D.(2,2)10.-2019的相反數(shù)是()A.2019 B.-2019 C. D.11.已知反比例函數(shù)的圖象經(jīng)過點(1,2),則它的圖象也一定經(jīng)過()A.(1,﹣2) B.(﹣1,2) C.(﹣2,1) D.(﹣1,﹣2)12.拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,在正方形中,,將繞點順時針旋轉(zhuǎn)得到,此時與交于點,則的長度為___________.14.關(guān)于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.15.在一個不透明的盒子中裝有除了顏色以外沒有任何其他區(qū)別的1個黑球和2個紅球,從盒子中任意取出1個球,取出紅球的概率是____.16.從一副撲克牌中的13張黑桃牌中隨機抽取一張,它是王牌的概率為____.17.將方程化成一般形式是______________.18.如圖所示,已知:點,,.在內(nèi)依次作等邊三角形,使一邊在軸上,另一個頂點在邊上,作出的等邊三角形分別是第1個,第2個,第3個,…,則第個等邊三角形的周長等于.三、解答題(共78分)19.(8分)某商業(yè)集團新建一小車停車場,經(jīng)測算,此停車場每天需固定支出的費用(設(shè)施維修費、車輛管理人員工資等)為800元.為制定合理的收費標(biāo)準(zhǔn),該集團對一段時間每天小車停放輛次與每輛次小車的收費情況進行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費不超過5元時,每天來此處停放的小車可達1440輛次;若停車費超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費x(元)只取整數(shù),用y(元)表示此停車場的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費﹣每天的固定支出)(1)當(dāng)x≤5時,寫出y與x之間的關(guān)系式,并說明每輛小車的停車費最少不低于多少元;(2)當(dāng)x>5時,寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);(3)該集團要求此停車場既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費應(yīng)定為多少元?此時日凈收入是多少?20.(8分)如圖,在△ABC中,∠C=90°,點O在AC上,以O(shè)A為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;(2)若AC=6,BC=8,OA=2,求線段DE的長.21.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當(dāng)點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)22.(10分)如圖,AB為半圓O的直徑,點C在半圓上,過點O作BC的平行線交AC于點E,交過點A的直線于點D,且∠D=∠BAC(1)求證:AD是半圓O的切線;(2)求證:△ABC∽△DOA;(3)若BC=2,CE=,求AD的長.23.(10分)如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)(k≠0)的圖象相交于A,B兩點,與x軸,y軸分別交于C,D兩點,tan∠DCO=,過點A作AE⊥x軸于點E,若點C是OE的中點,且點A的橫坐標(biāo)為﹣1.,(1)求該反比例函數(shù)和一次函數(shù)的解析式;(2)連接ED,求△ADE的面積.24.(10分)如圖,已知和中,,,,,;(1)請說明的理由;(2)可以經(jīng)過圖形的變換得到,請你描述這個變換;(3)求的度數(shù).25.(12分)如圖,在等邊△ABC中,AB=6,AD是高.(1)尺規(guī)作圖:作△ABC的外接圓⊙O(保留作圖痕跡,不寫作法)(2)在(1)所作的圖中,求線段AD,BD與弧所圍成的封閉圖形的面積.26.如圖,在△ABC中,AB=,∠B=45°,.求△ABC的周長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.2、D【分析】直接根據(jù)正弦的定義解答即可.【詳解】在△ACB中,∠C=90°,

,

故選:D.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的對邊a與斜邊c的比叫做∠A的正弦是解題的關(guān)鍵.3、D【分析】根據(jù)二次函數(shù)圖象左加右減,上加下減的平移規(guī)律進行解答即可.【詳解】拋物線向右平移個單位,得:,再向下平移個單位,得:.故選:.【點睛】本題主要考查的是函數(shù)圖象的平移,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式.4、A【分析】由在矩形紙片ABCD中,AB=4,AD=3,可求得BD的長,由折疊的性質(zhì),即可求得A′B的長,然后設(shè)AG=x,由勾股定理即可得:,解此方程即可求得答案.【詳解】解:∵四邊形ABCD是矩形,∴∴由折疊的性質(zhì),可得:A′D=AD=3,A′G=AG,∴A′B=BD?A′D=5?3=2,設(shè)AG=x,則A′G=x,BG=AB?AG=4?x,在Rt△A′BG中,由勾股定理得:∴解得:∴故選:A.【點睛】考查折疊的性質(zhì),矩形的性質(zhì),勾股定理等知識點,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、B【解析】根據(jù)軸對稱圖形的定義以及中心對稱圖形的定義分別判斷即可得出答案.【詳解】解:A、此圖形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、此圖形是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、此圖形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;D、此圖形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的定義,熟練掌握其定義是解決問題的關(guān)鍵.6、D【分析】根據(jù)因式分解法解一元二次方程,即可求解.【詳解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故選:D.【點睛】本題主要考查一元二次方程的解法,掌握因式分解法解方程,是解題的關(guān)鍵.7、A【分析】根據(jù)合并同類項的法則,同底數(shù)冪的乘法與除法以,積的乘方和完全平方公式的知識求解即可求得答案.【詳解】解:A、,故A選項正確;B、,故B選項錯誤;C、,故C選項錯誤;D、,故D選項錯誤.故選:A.【點睛】本題考查合并同類項的法則,同底數(shù)冪的乘法與除法以,積的乘方和完全平方公式等知識,熟練掌握相關(guān)運算法則是解題的關(guān)鍵.8、B【解析】試題解析:連接AD,

∵BC是切線,點D是切點,

∴AD⊥BC,

∴∠EAF=2∠EPF=80°,

∴S扇形AEF=,

S△ABC=AD?BC=×2×4=4,

∴S陰影部分=S△ABC-S扇形AEF=4-π.9、A【分析】作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得OA=OB=4,AC=OC=2,∠BOA=60°,則易得A點坐標(biāo)和O點坐標(biāo),再利用勾股定理計算出BC=2,然后根據(jù)第二象限點的坐標(biāo)特征可寫出B點坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,則點A′與點B重合,于是可得點A′的坐標(biāo).【詳解】解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A點坐標(biāo)為(-4,0),O點坐標(biāo)為(0,0),在Rt△BOC中,BC=,∴B點坐標(biāo)為(-2,2);∵△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴點A′與點B重合,即點A′的坐標(biāo)為(-2,2),故選:A.【點睛】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn):記住關(guān)于原點對稱的點的坐標(biāo)特征;圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標(biāo).常見的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°;解決本題的關(guān)鍵是正確理解題目,按題目的敘述一定要把各點的大致位置確定,正確地作出圖形.10、A【分析】根據(jù)只有符號不同的兩個數(shù)是互為相反數(shù)解答即可.【詳解】解:-1的相反數(shù)是1.故選A.【點睛】本題考查了相反數(shù)的定義,解答本題的關(guān)鍵是熟練掌握相反數(shù)的定義,正數(shù)的相反數(shù)是負數(shù),0的相反數(shù)是0,負數(shù)的相反數(shù)是正數(shù).11、D【分析】根據(jù)反比例函數(shù)圖象和性質(zhì)即可解答.先判斷出反比例函數(shù)圖象的一分支所在象限,即可得到另一分支所在象限.【詳解】解:由于點(1,2)在第一象限,則反比例函數(shù)的一支在第一象限,另一支必過第三象限.第三象限內(nèi)點的坐標(biāo)符號為(﹣,﹣)故選:D.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知反比例函數(shù)圖像的對稱性.12、B【分析】先從二次函數(shù)圖像獲取信息,運用二次函數(shù)的性質(zhì)一—判斷即可.【詳解】解:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故①錯誤;∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,且拋物線開口向下,∴當(dāng)x=1時,有y=a+b+c<0,故②正確;∵函數(shù)圖像的頂點為(-1,2)∴a-b+c=2,又∵由函數(shù)的對稱軸為x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正確;由①得b2-4ac>0,則ax2+bx+c=0有兩個不等的實數(shù)根,故④錯誤;綜上,正確的有兩個.故選:B.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,從二次函數(shù)圖像上獲取有用信息和靈活運用數(shù)形結(jié)合思想是解答本題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】利用正方形和旋轉(zhuǎn)的性質(zhì)得出A′D=A′E,進而利用勾股定理得出BD的長,進而利用銳角三角函數(shù)關(guān)系得出DE的長即可.【詳解】解:由題意可得出:∠BDC=45°,∠DA′E=90°,

∴∠DEA′=45°,

∴A′D=A′E,

∵在正方形ABCD中,AD=1,

∴AB=A′B=1,

∴BD=,

∴A′D=,

∴在Rt△DA′E中,DE=.故答案為:.【點睛】此題主要考查了正方形和旋轉(zhuǎn)的性質(zhì)以及勾股定理、銳角三角函數(shù)關(guān)系等知識,得出A′D的長是解題關(guān)鍵.14、且【解析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>1,方程有兩個不相等的實數(shù)根;當(dāng)△=1,方程有兩個相等的實數(shù)根;當(dāng)△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.15、【分析】根據(jù)概率的定義即可解題.【詳解】解:一共有3個球,其中有2個紅球,∴紅球的概率=.【點睛】本題考查了概率的實際應(yīng)用,屬于簡單題,熟悉概念是解題關(guān)鍵.16、1【分析】根據(jù)是王牌的張數(shù)為1可得出結(jié)論.【詳解】∵13張牌全是黑桃,王牌是1張,∴抽到王牌的概率是1÷13=1,故答案為:1.【點睛】本題考查了概率的公式計算,熟記概率=所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.17、【分析】先將括號乘開,再進行合并即可得出答案.【詳解】x2-6x+4+x+1=0,.故答案為:.【點睛】本題考查了一次二次方程的化簡,注意變號是解決本題的關(guān)鍵.18、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1為等邊三角形,∠A1AB1=60°,∴∠COA1=30°,則∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此類推,第n個等邊三角形的邊長等于.第n個等邊三角形的周長等于.三、解答題(共78分)19、(1)y=1440x﹣800;每輛次小車的停車費最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.【分析】(1)根據(jù)題意和公式:日凈收入=每天共收取的停車費﹣每天的固定支出,即可求出y與x的關(guān)系式,然后根據(jù)日凈收入不低于2512元,列出不等式,即可求出x的最小整數(shù)值;(2)根據(jù)題意和公式:日凈收入=每天共收取的停車費﹣每天的固定支出,即可求出y與x的關(guān)系式;(3)根據(jù)x的取值范圍,分類討論:當(dāng)x≤5時,根據(jù)一次函數(shù)的增減性,即可求出此時y的最大值;當(dāng)x>5時,將二次函數(shù)一般式化為頂點式,即可求出此時y的最大值,從而得出結(jié)論.【詳解】解:(1)由題意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整數(shù),∴x最小取3,即每輛次小車的停車費最少不低于3元.答:每輛小車的停車費最少不低于3元;(2)由題意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)當(dāng)x≤5時,∵1440>0,∴y隨x的增大而增大∴當(dāng)x=5時,最大日凈收入y=1440×5﹣800=6400(元)當(dāng)x>5時,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870∴當(dāng)x=時,y有最大值.但x只能取整數(shù),∴x取8或1.顯然,x取8時,小車停放輛次較多,此時最大日凈收入為y=﹣120×+7870=7840(元)∵7840元>6400元∴每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.答:每輛次小車的停車費應(yīng)定為8元,此時的日凈收入為7840元.【點睛】此題考查的是一次函數(shù)和二次函數(shù)的綜合應(yīng)用,掌握實際問題中的等量關(guān)系、一次函數(shù)的增減性和利用二次函數(shù)求最值是解決此題的關(guān)鍵.20、(1)直線DE與⊙O相切;(2)4.1.【分析】(1)連接OD,通過線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)證明∠EDB+∠ODA=90°,進而得出OD⊥DE,根據(jù)切線的判定即可得出結(jié)論;(2)連接OE,作OH⊥AD于H.則AH=DH,由△AOH∽△ABC,可得,推出AH=,AD=,設(shè)DE=BE=x,CE=8-x,根據(jù)OE2=DE2+OD2=EC2+OC2,列出方程即可解決問題;【詳解】(1)連接OD,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切線.(2)連接OE,作OH⊥AD于H.則AH=DH,∵△AOH∽△ABC,∴,∴,∴AH=,AD=,設(shè)DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.1,∴DE=4.1.【點睛】本題考查切線的判定和性質(zhì)、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.21、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.連接AO,由(1)得四邊形DEFG是平行四邊形,∵點D,G,F(xiàn)分別是AB,OB,OC的中點,∴,,當(dāng)AO=BC時,GF=DF,∴四邊形DGFE是菱形.【點睛】本題主要考查三角形的中位線定理,平行四邊形、菱形的判定,平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點,貫穿于整個初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見的知識點,一般難度不大,需熟練掌握.22、(1)見解析;(2)見解析;(3)【分析】(1)要證AD是半圓O的切線只要證明∠DAO=90°即可;(2)根據(jù)兩組角對應(yīng)相等的兩個三角形相似即可得證;(3)先求出AC、AB、AO的長,由第(2)問的結(jié)論△ABC∽△DOA,根據(jù)相似三角形的性質(zhì):對應(yīng)邊成比例可得到AD的長.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD⊥OA,∴AD是半圓O的切線;(2)證明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC,∴△ABC∽△DOA;(3)解:∵O為AB中點,OD∥BC,∴OE是△ABC的中位線,則E為AC中點,∴AC=2CE,∵BC=2,CE=,∴AC=∴AB=,∴OA=AB=,由(2)得:△ABC∽△DOA,∴,∴,∴.【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.同時考查了相似三角形的判定與性質(zhì),難度適中.23、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根據(jù)題意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),運用待定系數(shù)法即可求得反比例函數(shù)與一次函數(shù)的解析式;

(2)求得兩個三角形的面積,然后根據(jù)S△ADE=S△ACE+S△DCE即可求得.【詳解】(1)∵AE⊥x軸于點E,點C是OE的中點,且點A的橫坐標(biāo)為﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直線y=ax+b(a≠0)與x軸、y軸分別交于C、D兩點,∴,解得,∴一次函數(shù)的解析式為y=﹣x﹣3,把點A的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論