版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
PAGE
11
2021美國"大聯(lián)盟"(MathLeague)國際夏季數(shù)學挑戰(zhàn)活動2021MathLeagueInternationalSummerChallenge
Grade5,IndividualQuestions&Solutions
Question1:
Sarahisusingpopsiclestickstobuildsomegridsforhercityplanningproject.Sheneeds4popsiclestickstomakea1by1grid,and12stickstomakea2by2gridasshownbelow.Howmanysticksdoessheneedtomakea10by20grid?
Answer:430Solution:
Analyzethe2by2grid.TocreateitSarahused3rowsof2stickseachand3columnsof2stickseach.Similartoit,therewouldbe11rowsandthereshouldbe20sticksineachrow.So,thereare20×11=220sticks(placedhorizontally).
Therewouldalsobe21columnsandthereshouldbe10sticksineach.Therefore,thereare21×10=210sticksplacedvertically.
Total=220+210=430popsiclesticks
Question2:
Thesidesofthelargerectangleare20mand16m,figurebelow,notdrawntoscale.Allsixshadedrectanglesareidentical.Whatisthetotalareaofalltheshadedregions,insquaremeters?
Answer:192Solution:
Findthedimensionofthesmallrectangle.Thelength:16÷2=8m.Thewidth:20–8–8=4m.Thetotalareaofalltheshadedregions:6×(8×4)=192m2.
Question3:
Iftwosidesofasquarefieldwereincreasedbyfivefeet,asseeninthediagrambelow,notdrawntoscale,theareaofthefieldwouldincreaseby245squarefeet.Findtheareaoftheoriginalsquare.
Answer:484Solution:
Theareaoftheshadedsquareis5×5=25,figurebelow.Theareaofeachofthetwo“new”rectanglesis(245–25)÷2=110.Thusthelengthofthe“new”rectangle,orthesidelengthoftheoriginalsquare,is110÷5=22.Sotheareaoftheoriginalsquareis22×22=484.
Question4:
Duringpractice,Dana’ssixarrowslandonthetargetshown.Eacharrowisinsideoneoftheregionsofthetarget.Whichofthefollowingtotalscoresispossible:44,31,26,16?(Ifanarrowlandsinsidethesmallestcircleinthecenter,thescoreDanagetsis7.Ifanarrowlandsinsidethesecondcircle,butnotinsidethesmallestcircle,thescoreDanagetsis5.Ifanarrowlandsinsidethelargestcircle,butnotinsidethesecondcircleorthesmallestcircle,thescoreDanagetsis3.Assumenoarrowlandsontheboundaryofanyofthethreecircles.)
44
31
26
16Answer:(c)Solution:
Assumexarrowslandinsidethesmallestcircle,andyarrowslandinsidethesecondcircle.Then6–x–yarrowslandinsidethelargestcircle.Andthetotalscoreis:
7x+5y+3(6–x–y)=4x+2y+18
Thetotalscoreisanevennumber,so(b)isnotgood.
Thetotalscoreisgreaterthanorequalto18,so(d)isnotgood.
Ifthetotalscoreis44,thenwehave4x+2y+18=44.4x+2y=26,2x+y=13.Butitisnotpossiblethat2x+y=13,as0≤x≤6,0≤y≤6,andx+y≤6.So(a)isnotgood.
Whenx=0andy=4orx=1andy=2,orx=2andy=0,4x+2y+18=26.
Question5:
Thereare1000peopleinaroom.Eachpaireithershakeshandsordoesnot.
Isitalwaystruethatsometwopeopleshookthesamenumberofhands?(Pleaseenter1ifyouranswerisYes,and0ifyouranswerisNo.)
Isitalwaystruethatsomethreepeopleshookthesamenumberofhands?(Pleaseenter1ifyouranswerisYes,and0ifyouranswerisNo.)
Isitalwaystruethatsomefourpeopleshookthesamenumberofhands?(Pleaseenter1ifyouranswerisYes,and0ifyouranswerisNo.)
Isitalwaystruethatsomefivepeopleshookthesamenumberofhands?(Pleaseenter1ifyouranswerisYes,and0ifyouranswerisNo.)
Note:
Onedoesn’tshakehis/herownhand.
Onedoesn’tshakethesameperson’shandmorethanonce.
Answer:
(1)1
(2)0
(3)0
(4)0
Solution:
Ifsomeoneshook999times,theneveryoneshookatleastonetime.Sothepossiblenumbersare1to999.Butthereare1000people,fromPigeonholePrinciple,atleasttwopeopleshookthesamenumberofhands.
Nottrue.
Nottrue.
Nottrue.
Question6:
Thenumbers1through10arewritteninarow.Canthesigns“+”and“–”beplacedbetweenthem,sothatthevalueoftheresultingexpressionis0?(Note:Thereare10numbers,andthereare9placestoplacesigns.)
Answer:No(Yes/No)Solution:
1+2+3+4+5+6+7+8+9+10=55
Changingany“+”to“–”,theresultingexpressionisalsoanoddnumber.Sotheresultingexpressionisalwaysanoddnumber.
Question7:
AlbertandBernardjustbecamefriendswithCheryl,andtheywanttoknowwhenherbirthdayis.Cherylgivesthemalistof10possibledates,figurebelow.CherylthentellsAlbertandBernardseparatelythemonthandthedayofherbirthdayrespectively.(ThatisCheryltellsAlbertthemonthofherbirthday,andtellsBernardthedayofherbirthday.)
Conversation:
Albert:Idon’tknowwhenCheryl’sbirthdayis,butIknowthatBernardalsodoesn’tknow.
Bernard:AtfirstIdidn’tknowwhenCheryl’sbirthdayis,butIknownow.
Albert:ThenIalsoknowwhenCheryl’sbirthdayis.WhenisCheryl’sbirthday?
Pleaseenterthemonthfirst,followedbytheday.Whenyouenterthemonth,pleaseenter5forMay,6forJune,7forJuly,and8forAugust.
Answer:
7
16
Solution:
Albert:Idon’tknowwhenCheryl’sbirthdayis,butIknowthatBernardalsodoesn’tknow.
SoBernardknowsthatitisnotMayorJune.IfitisMay,thenitispossiblethatitisMay19.CherylwilltellBernardthatthedayis19,thenBernardwillknowherbirthdayisMay19.SoitisnotMay.ItisnotJuneeither.
Bernard:AtfirstIdidn’tknowwhenCheryl’sbirthdayis,butIknownow.
SoherbirthdayisJuly16,August15,orAugust17.ThenumberthatCheryltellsBernardis15,16,or17.
Albert:ThenIalsoknowwhenCheryl’sbirthdayis.
IfitisAugust,thenAlbertwillnotbeabletotellCheryl’sbirthday.SoithastobeJuly.SotheanswerisJuly16.
Question8:
Goal:
Arrangethesixdifferentjuicesintothefollowingorder.
Theorderis:1–red,2–orange,3–yellow,4–green,5–blue,6–violet.
Rules:
Youmayonlypourafilledcupintoanemptycup.
Youmaynotswitchthepositionsofanycups.
Theemptycupmustendupontheright.
Examples:
2Poursarenecessarytosolvethefollowingexamplepuzzle,figurebelow.
PourOne,figurebelow.
PourTwo,figurebelow:
Foranotherexamplebelow,thisexampleneedsfourpours.
PourOne,figurebelow.
PourTwo,figurebelow.
PourThree,figurebelow.
PourFour,figurebelow.
For6differentjuicesandoneemptycup,thereare5040(=7!=7×6×5×4×3×2×1)possiblepermutations.Twoofthemwerelistedabove.Oneneeds2pours.Theotherneeds4pours.
Ofallthe5040possiblepermutations,howmanypermutationsareimpossibletosolve?Thatisnomatterhowyoupourthejuices,youcan’tarrangethejuicesinorder.
Answer:0Solution:
Everypermutationissolvable.Inthecaseof6differentjuices,ifwelookateverycupfrom
theleftmosttotheonerightbeforetherightmost,thereareatmost6cupsthatarenotfillewiththecorrectjuices.Let’scallthesecups“incorrectcups.”Foreveryincorrectcup,weneedatmosttwopourstomakeitcorrect,thatistofillthiscupwiththecorrectjuice.Soeverypermutationissolvable.
<endofsolution>
Whatisthelargestnumberofpoursyouneedtosolveanysolvablepermutation?
Answer:9Solution:
Let’sfirstlookatthecasewhenthereareonly2differentjuices,figurebelow.Thelargestnumberofpoursis3.AndithappenswhenthepositionsofJuice1andJuice2areswapped,andtheemptycupisontheright.
Thenlet’slookatthecasewhenthereare4differentcups,figurebelow.Thelargestnumberofpoursis6.Andithappenswhenthepositionsof2juicesareswapped,andthepositionsoftheother2juicesareswappedtoo,andtheemptycupisontheright.
Sowhenthenumberofjuicesisn,nisanevennumber,thelargestnumberofpoursisn3.
2
<endofsolution>
For1000001differentjuicesandoneemptycup,thereare1000002!possiblepermutations.Thereisapre-definedorderofthe1000001juices,justastheorderforthe6juicesabove.
Ofallthe1000002!possiblepermutations,howmanypermutationsareimpossibletosolve?Thatisnomatterhowyoupourthejuices,youcan’tarrangethejuicesinorder.
Answer:0Solution:
Everypermutationissolvable.Inthecaseof1000001differentjuices,ifwelookatevery
cupfromtheleftmosttotheonerightbeforetherightmost,thereareatmost1000001cupsthatarenotfillewiththecorrectjuices.Let’scallthesecups“incorrectcups.”Foreveryincorrectcup,weneedatmosttwopourstomakeitcorrect,thatistofillthiscupwiththecorrectjuice.Soeverypermutationissolvable.
<endofsolution>
Whatisthelargestnumberofpoursyouneedtosolveanysolvablepermutation(for1000001differentjuicesandoneemptycup)?
Answer:1500001Solution:
Whenthenumberofjuicesisn,nisanoddnumber,thelargestnumberofpoursis
n131.
2
<endofsolution>
Question9:
Twelvestraightjacketedprisonersareonthedeathrow.Tomorrowtheywillbearrangedinasingle-fileline,positionsdeterminedrandomly,allfacingthesamedirection.Thepersoninthebackoftheline,whowillbereferredtoasthetwelfthperson,canseetheelevenpeoplestandinginfrontofhim;theeleventhpersoncanseethetenpeoplestandinginfrontofhim,butnotthetwelfthpersonwhoisstandingbehindhim;soonandsoforthuntilyougettothefirstpersoninlinewhocannotseeanyone.Thewardenofthisprisonlikestoplaygameswithhisprisonersandhaslinedeveryoneupinthisfashionsothathecangivethemanopportunitytogaintheirfreedom.
Thewardenwillplace,atrandom,ablackorwhitehatoneachprisoner’shead.Theprisonerscannotseethecolorofthehattheyarewearing,buttheycanseethecolorofthehatsofeachprisonerstandinginfrontoftheminline.Afterallofthehatshavebeenplacedontheprisoners’heads,thewardenasksthepersoninthebackoftheline,thetwelfthperson,“whatisthecolorofthehatonyourhead?”Theprisonercanreplybysayingeither“black”or“white”,butnothingelse.Whentheprisoneranswersthewarden,alltheprisonersinlinecanhearthereply.Iftheprisonerrepliedwiththecorrectcolorofhishat,hewillbefreedfromtheprison.Ifheiswrong,hewillbeexecutedthatnight.Thisgamecontinuesuntilalltwelveoftheprisonersinlinehavebeenaskedaboutthecoloroftheirhat.Whilethegameisinprogress,noprisonerisallowedtospeak,move,ordoanythinguntilitistheirturntoanswerthequestion.Thewardenallowstheprisonerstogettogetherinthecourtyardthedaybeforethisgametocomeupwithaplantomaximizethenumberoflivestheycansave.Theprisonerscomeupwithaplanthatguaranteesxprisoner(s)willsurvive,and12–xprisoner(s)willeachhavea50%chancetosurvive.Whatisthelargestpossiblevalueofx?
Answer:11Solution:
Theprisonerscancomeupwithaplanthatwillgivethetwelfthprisonertoacta50/50chanceatsurvivalandwillguaranteethattheotherelevenprisonersinlineallsurvive.Thisishowtheydoit:
Theprisonersdecidethatwhoeverisstandinginthetwelfthpositionandspeaksfirstwillsimplysaywhichevercolorheseesanevenamountof.Thereisnowayforthisprisonertoraisehischancesofsurvivalabove50%,butbysayingwhichevercolorheseesanevenamountof,everyotherprisonercandeducethecoloroftheirownhat.
Forexample:
Ifthetwelfthpersonsays“black”,thentheeleventhpersoninlineknowswhatcolorhatheiswearingandcancorrectlystateittothegroupbasedontheremaininghatsthathecansee.Ifheseesanoddnumberofblackhatsinfrontofhim,thenhecanbesurethathishatisblackbecausethepersoninlinebehindhimsawanevenamount.Now,the
tenthpersoninline,knowingthatthetwelfthpersonsawanevenamountofblackhatsandknowingthattheeleventhpersoninlineiswearingablackhat,candeducethecolorofhishatbasedontheremainingninehats.
Ifthetwelfthpersoninlinesawanevenamountofblackhats,andtheeleventhpersoninlineiswearingablackhat,thenthetenthpersoninlineknowsthatifheseesanoddnumberofblackhats,heiswearingawhitehat,andifheseesanevennumberofblackhats,hemustbewearingablackhathimself.
Thissystemallowsforelevenprisonerstoguaranteetheirsurvival.Nosomuchfunthetwelfthprisoner.
Question10:
Somewhereintheworldthereisasmallneighborhoodfullofveryeccentricandintelligentpeople.Therearefivehousesthatareeachadifferentcolor.Thereisapersonofadifferentnationalitywholivesineachhouse.Eachofthesefivepeopledrinkstheirownspecialdrink,smokestheirownspecialbrandofcigarettes,andhastheirownspecialpet.Noonehasthesamepet,smokesthesamebrandofcigarettes,ordrinksthesamedrink.Oneofthesefivepeopleownsapetfish.Withjustthefollowinginformation,figureoutwhoownsthecatandwhoownsthefish:
TheBritishmanlivesintheredhouse.
TheSwedishmanhasadogforapet.
TheDanishmandrinkstea.
Thegreenhouseandthewhitehousearenexttoeachother,andthegreenhouseistotheleftofthewhitehouse.
Theownerofthegreenhousedrinkscoffee.
ThepersonthatsmokesPallMallcigaretteshasabirdforapet.
TheowneroftheyellowhousesmokesDunhillcigarettes.
Thepersonwholivesinthemiddlehousedrinksmilk.
TheNorwegianlivesinthefirsthouse,countingfromlefttoright.
ThepersonwhosmokesBlendcigaretteslivesnexttotheonethathasacatforapet.
ThepersonwhohasahorseforapetlivesnexttotheonewhosmokesDunhillcigarettes.
TheonewhosmokesBluemastercigarettesdrinksbeer.
TheGermansmokesPrincecigarettes.
TheNorwegianlivesnexttoabluehouse.
ThepersonwhosmokesBlendcigaretteshasaneighborwhodrinkswater.
Thefivehouses
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度數(shù)據(jù)中心服務(wù)器租賃合同
- 2024醫(yī)院病房清潔服務(wù)合同
- 2024年展覽保險服務(wù)協(xié)議
- 2024年度0kv線路工程建設(shè)的合作開發(fā)合同
- 2024年度婚禮主持委托合同
- 2024年定制版太陽能系統(tǒng)維護合同
- 2024年度太陽能熱水系統(tǒng)安裝合同
- 2024年度城市供水供電供氣合同
- 2024年三人股東責任承擔協(xié)議
- 04版建筑工程合同
- 軟件平臺施工組織方案
- 經(jīng)濟師中級考試《經(jīng)濟基礎(chǔ)知識》歷年真題卷及答案解析
- 2024 smart汽車品牌用戶社區(qū)運營全案
- 期中 (試題) -2024-2025學年人教精通版英語六年級上冊
- 期刊編輯的學術(shù)期刊論文寫作指導考核試卷
- 教科版小學科學五年級上冊教案(全冊)
- 戶外廣告牌施工方案
- 泵站運行管理手冊
- 九年級化學上冊(滬教版2024)新教材解讀課件
- JGT503-2016承插型盤扣式鋼管支架構(gòu)件
- SH∕T 3097-2017 石油化工靜電接地設(shè)計規(guī)范
評論
0/150
提交評論