版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省合肥市肥東四中學(xué)九級(jí)2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.以半徑為1的圓的內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是()A. B. C. D.2.如圖,網(wǎng)格中的兩個(gè)三角形是位似圖形,它們的位似中心是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D3.如圖,在矩形ABCD中,AB=12,P是AB上一點(diǎn),將△PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是G,過點(diǎn)B作BE⊥CG,垂足為E,且在AD上,BE交PC于點(diǎn)F,則下列結(jié)論,其中正確的結(jié)論有()①BP=BF;②若點(diǎn)E是AD的中點(diǎn),那么△AEB≌△DEC;③當(dāng)AD=25,且AE<DE時(shí),則DE=16;④在③的條件下,可得sin∠PCB=;⑤當(dāng)BP=9時(shí),BE?EF=1.A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)4.如圖,平行四邊形中,為邊的中點(diǎn),交于點(diǎn),則圖中陰影部分面積與平行四邊形的面積之比為()A. B. C. D.5.對(duì)于反比例函數(shù)y=﹣,下列說法正確的有()①圖象經(jīng)過點(diǎn)(1,﹣3);②圖象分布在第二、四象限;③當(dāng)x>0時(shí),y隨x的增大而增大;④點(diǎn)A(x1,y1)、B(x1,y1)都在反比例函數(shù)y=﹣的圖象上,若x1<x1,則y1<y1.A.1個(gè) B.1個(gè) C.3個(gè) D.4個(gè)6.如圖,O是矩形ABCD對(duì)角線AC的中點(diǎn),M是AD的中點(diǎn),若BC=8,OB=5,則OM的長為()A.1 B.2 C.3 D.47.已知正多邊形的一個(gè)內(nèi)角是135°,則這個(gè)正多邊形的邊數(shù)是()A.3 B.4 C.6 D.88.把同一副撲克牌中的紅桃2、紅桃3、紅桃4三張牌背面朝上放在桌子上,從中隨機(jī)抽取兩張,牌面的數(shù)字之和為奇數(shù)的概率為()A. B. C. D.9.將拋物線y=﹣3x2先向左平移1個(gè)單位長度,再向下平移2個(gè)單位長度,得到的拋物線的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+210.以為頂點(diǎn)的二次函數(shù)是()A. B.C. D.二、填空題(每小題3分,共24分)11.小麗生日那天要照全家福,她和爸爸、媽媽隨意排成一排,則小麗站在中間的概率是________.12.若,則的值為_______.13.二次函數(shù)y=x2+4x+a圖象上的最低點(diǎn)的橫坐標(biāo)為_____.14.如圖,正方形的邊長為,在邊上分別取點(diǎn),,在邊上分別取點(diǎn),使.....依次規(guī)律繼續(xù)下去,則正方形的面積為__________.15.在一個(gè)不透明的袋子中裝有8個(gè)紅球和16個(gè)白球,它們只有顏色上的區(qū)別,現(xiàn)從袋中取走若干個(gè)紅球,并放入相同數(shù)量的白球,攪拌均勻后,要使從袋中任意摸出一個(gè)球是紅球的概率是,則取走的紅球?yàn)開______個(gè).16.如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______17.等邊三角形中,,將繞的中點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,其中點(diǎn)的運(yùn)動(dòng)路徑為,則圖中陰影部分的面積為__________.18.已知函數(shù)的圖象如圖所示,若矩形的面積為,則__________.三、解答題(共66分)19.(10分)如圖,已知△ABC,∠B=90゜,AB=3,BC=6,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),動(dòng)點(diǎn)P沿BA以1個(gè)單位長度/秒的速度向點(diǎn)A移動(dòng),動(dòng)點(diǎn)Q沿BC以2個(gè)單位長度/秒的速度向點(diǎn)C移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.連接PQ,將△QBP繞點(diǎn)Q順時(shí)針旋轉(zhuǎn)90°得到△,設(shè)△與△ABC重合部分面積是S.(1)求證:PQ∥AC;(2)求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍.20.(6分)制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作.設(shè)該材料溫度為y(℃),從加熱開始計(jì)算的時(shí)間為x(分鐘).據(jù)了解,設(shè)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系;停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.(1)求將材料加熱時(shí),y與x的函數(shù)關(guān)系式;(2)求停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;(3)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時(shí),須停止操作,那么操作時(shí)間是多少?21.(6分)如圖所示,是的直徑,其半徑為,扇形的面積為.(1)求的度數(shù);(2)求的長度.22.(8分)如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長CO交⊙O于點(diǎn)M,過點(diǎn)M作MN∥OB交CD于N.(1)求證:MN是⊙O的切線;(2)當(dāng)OB=6cm,OC=8cm時(shí),求⊙O的半徑及MN的長.23.(8分)(1)計(jì)算:(2)解方程:24.(8分)如圖,的三個(gè)頂點(diǎn)坐標(biāo)分別是,,.(1)將先向左平移4個(gè)單位長度,再向上平移2個(gè)單位長度,得到,畫出;(2)與關(guān)于原點(diǎn)成中心對(duì)稱,畫出.25.(10分)在一個(gè)不透明的袋子中裝有大小、形狀完全相同的三個(gè)小球,上面分別標(biāo)有1,2,3三個(gè)數(shù)字.(1)從中隨機(jī)摸出一個(gè)球,求這個(gè)球上數(shù)字是奇數(shù)的概率是;(2)從中先隨機(jī)摸出一個(gè)球記下球上數(shù)字,然后放回洗勻,接著再隨機(jī)摸出一個(gè),求這兩個(gè)球上的數(shù)都是奇數(shù)的概率(用列表或樹狀圖方法)26.(10分)(1)解方程:x2﹣4x﹣3=0(2)計(jì)算:
參考答案一、選擇題(每小題3分,共30分)1、D【解析】由于內(nèi)接正三角形、正方形、正六邊形是特殊內(nèi)角的多邊形,可構(gòu)造直角三角形分別求出邊心距的長,由勾股定理逆定理可得該三角形是直角三角形,進(jìn)而可得其面積.【詳解】如圖1,∵OC=1,∴OD=1×sin30°=;如圖2,∵OB=1,∴OE=1×sin45°=;如圖3,∵OA=1,∴OD=1×cos30°=,則該三角形的三邊分別為:、、,∵()2+()2=()2,∴該三角形是以、為直角邊,為斜邊的直角三角形,∴該三角形的面積是,故選:D.【點(diǎn)睛】考查正多邊形的外接圓的問題,應(yīng)用邊心距,半徑和半弦長構(gòu)成直角三角形,來求相關(guān)長度是解題關(guān)鍵。2、D【分析】利用對(duì)應(yīng)點(diǎn)的連線都經(jīng)過同一點(diǎn)進(jìn)行判斷.【詳解】如圖,位似中心為點(diǎn)D.故選D.【點(diǎn)睛】本題考查了位似變換:如果兩個(gè)圖形不僅是相似圖形,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心.注意:兩個(gè)圖形必須是相似形;對(duì)應(yīng)點(diǎn)的連線都經(jīng)過同一點(diǎn);對(duì)應(yīng)邊平行.3、C【分析】①根據(jù)折疊的性質(zhì)∠PGC=∠PBC=90°,∠BPC=∠GPC,從而證明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性質(zhì)得出AE=DE,即可利用條件證明△ABE≌△DCE;③先根據(jù)題意證明△ABE∽△DEC,再利用對(duì)應(yīng)邊成比例求出DE即可;④根據(jù)勾股定理和折疊的性質(zhì)得出△ECF∽△GCP,再利用對(duì)應(yīng)邊成比例求出BP,即可算出sin值;⑤連接FG,先證明?BPGF是菱形,再根據(jù)菱形的性質(zhì)得出△GEF∽△EAB,再利用對(duì)應(yīng)邊成比例求出BE·EF.【詳解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折疊得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正確;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中點(diǎn),∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正確;③當(dāng)AD=25時(shí),∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,設(shè)AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正確;④由③知:CE=,BE=,由折疊得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,設(shè)BP=BF=PG=y(tǒng),∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正確;⑤如圖,連接FG,由①知BF∥PG,∵BF=PG=PB,∴?BPGF是菱形,∴BP∥GF,F(xiàn)G=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE?EF=AB?GF=12×9=1;故⑤正確,所以本題正確的有①②③⑤,4個(gè),故選:C.【點(diǎn)睛】本題考查矩形與相似的結(jié)合、折疊的性質(zhì),關(guān)鍵在于通過基礎(chǔ)知識(shí)證明出所需結(jié)論,重點(diǎn)在于相似對(duì)應(yīng)邊成比例.4、C【分析】根據(jù)等底等高的三角形面積比和相似三角形的相似比推出陰影部分面積.【詳解】設(shè)平行四邊形的邊AD=2a,AD邊上的高為3b;過點(diǎn)E作EF⊥AD交AD于F,延長FE交BC于G
∴平行四邊形的面積是6ab
∴FG=3b
∵AD∥BC
∴△AED∽△CEM
∵M(jìn)是BC邊的中點(diǎn),
∴,
∴EF=2b,EG=b
∴∵∴∴陰影部分面積=∴陰影部分面積:平行四邊形的面積=
故選:C.【點(diǎn)睛】本題主要考查了相似三角形的性質(zhì),相似三角形的對(duì)應(yīng)邊上的高線的比等于相似比.5、C【解析】根據(jù)反比例函數(shù)的性質(zhì)判斷即可.【詳解】解:①∵將x=1代入y=-y=﹣得,y=-3∴圖象經(jīng)過點(diǎn)(1,﹣3);②③∵k=-3,圖象分布在第二、四象限,在每個(gè)分支上,y隨x的增大而增大;④若點(diǎn)A在第二象限,點(diǎn)B在第四象限,則y1>y1.由此可得①②③正確,故選:C.【點(diǎn)睛】本題考查的是反比例函數(shù)的性質(zhì),理解熟記其性質(zhì)是解決本題的關(guān)鍵.6、C【分析】由O是矩形ABCD對(duì)角線AC的中點(diǎn),可求得AC的長,然后運(yùn)用勾股定理求得AB、CD的長,又由M是AD的中點(diǎn),可得OM是△ACD的中位線,即可解答.【詳解】解:∵O是矩形ABCD對(duì)角線AC的中點(diǎn),OB=5,∴AC=2OB=10,∴CD=AB===6,∵M(jìn)是AD的中點(diǎn),∴OM=CD=1.故答案為C.【點(diǎn)睛】本題考查了矩形的性質(zhì)、直角三角形的性質(zhì)以及三角形中位線的性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.7、D【分析】根據(jù)正多邊形的一個(gè)內(nèi)角是135°,則知該正多邊形的一個(gè)外角為45°,再根據(jù)多邊形的外角之和為360°,即可求出正多邊形的邊數(shù).【詳解】解:∵正多邊形的一個(gè)內(nèi)角是135°,∴該正多邊形的一個(gè)外角為45°,∵多邊形的外角之和為360°,∴邊數(shù)=,∴這個(gè)正多邊形的邊數(shù)是1.故選:D.【點(diǎn)睛】本題考查了正多邊形的內(nèi)角和與外角和的知識(shí),知道正多邊形的外角之和為360°是解題關(guān)鍵.8、D【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與從中隨機(jī)抽取兩張,牌面的數(shù)字之和為奇數(shù)的情況,再利用概率公式求解即可求得答案.【詳解】解:根據(jù)題意畫樹狀圖如下:∵共有6種等可能的結(jié)果,從中隨機(jī)抽取兩張,牌面的數(shù)字之和為奇數(shù)的有4種情況,∴從中隨機(jī)抽取兩張,牌面的數(shù)字之和為奇數(shù)的概率為:;故選:D.【點(diǎn)睛】本題考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.9、C【分析】根據(jù)“左加右減、上加下減”的原則進(jìn)行解答即可.【詳解】解:將拋物線y=﹣3x1向左平移1個(gè)單位所得直線解析式為:y=﹣3(x+1)1;再向下平移1個(gè)單位為:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故選C.【點(diǎn)睛】此題主要考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.10、C【解析】若二次函數(shù)的表達(dá)式為,則其頂點(diǎn)坐標(biāo)為(a,b).【詳解】解:當(dāng)頂點(diǎn)為時(shí),二次函數(shù)表達(dá)式可寫成:,故選擇C.【點(diǎn)睛】理解二次函數(shù)解析式中頂點(diǎn)式的含義.二、填空題(每小題3分,共24分)11、【分析】先利用樹狀圖展示所有6種等可能的結(jié)果數(shù),再找出小麗恰好排在中間的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有種等可能的結(jié)果數(shù),其中小麗站在中間的結(jié)果數(shù)為,所以小麗站在中間的概率.故答案為:.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.12、【解析】根據(jù)等式性質(zhì),等號(hào)兩邊同時(shí)加1即可解題.【詳解】解:∵,∴,即.【點(diǎn)睛】本題考查了分式的計(jì)算,屬于簡單題,熟悉分式的性質(zhì)是解題關(guān)鍵.13、﹣1.【解析】直接利用二次函數(shù)最值求法得出函數(shù)頂點(diǎn)式,進(jìn)而得出答案.【詳解】解:∵二次函數(shù)y=x1+4x+a=(x+1)1﹣4+a,∴二次函數(shù)圖象上的最低點(diǎn)的橫坐標(biāo)為:﹣1.故答案為﹣1.【點(diǎn)睛】此題主要考查了二次函數(shù)的最值,正確得出二次函數(shù)頂點(diǎn)式是解題關(guān)鍵.14、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面積,同理可求出正方形A2B2C2D2的面積,得出規(guī)律即可得答案.【詳解】∵正方形ABCD的邊長為a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面積為a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面積為()2a2,……∴正方形的面積為()na2,故答案為:()na2【點(diǎn)睛】本題考查正方形的性質(zhì)及勾股定理,正確計(jì)算各正方形的面積并得出規(guī)律是解題關(guān)鍵.15、1【解析】設(shè)取走的紅球有x個(gè),根據(jù)概率公式可得方程,解之可得答案.【詳解】設(shè)取走的紅球有x個(gè),根據(jù)題意,得:,解得:x=1,即取走的紅球有1個(gè),故答案為:1.【點(diǎn)睛】此題主要考查了概率公式,解題的關(guān)鍵是掌握隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).16、【解析】如圖,連接BB′,∵△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD?C′D=?1.故答案為:?1.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點(diǎn).17、【分析】先利用勾股定理求出OB,再根據(jù),計(jì)算即可.【詳解】解:在等邊三角形中,O為的中點(diǎn),∴OB⊥OC,,∴∠BOC=90°∴∵將繞的中點(diǎn)逆時(shí)針旋轉(zhuǎn),得到∴∴三點(diǎn)共線∴故答案為:【點(diǎn)睛】本題考查旋轉(zhuǎn)變換、扇形面積公式,三角形的面積公式,以及勾股定理等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.18、-6【分析】根據(jù)題意設(shè)AC=a,AB=b解析式為y=A點(diǎn)的橫坐標(biāo)為-a,縱坐標(biāo)為b,因?yàn)锳B*AC=6,k=xy=-AB*AC=-6【詳解】解:由題意得設(shè)AC=a,AB=b解析式為y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【點(diǎn)睛】此題主要考查了反比例函數(shù)與幾何圖形的結(jié)合,注意A點(diǎn)的橫坐標(biāo)的符號(hào).三、解答題(共66分)19、(1)見解析;(2)【分析】(1)由題意可得出,繼而可證明△BPQ∽△BAC,從而證明結(jié)論;(2)由題意得出QP`⊥AC,分三種情況利用相似三角形的判定及性質(zhì)討論計(jì)算.【詳解】解:(1)∵BP=t,BQ=2t,AB=3,BC=6∴∵∠B=∠B∴△BPQ∽△BAC∴∠BPQ=∠A∴PQ∥AC(2)∵BP=tBQ=2t∴P`Q=∵AB=3BC=6∴AC=3∵PQ∥AC∴QP`⊥AC當(dāng)0<t≤時(shí),S=t2當(dāng)<t≤1時(shí):設(shè)QP`交AC于點(diǎn)MP`B`交AC于點(diǎn)N∴∠QMC=∠B=90°∴△QMC∽△ABC∴∴∴QM=∵P`Q=t∴P`M=又∵∠P`=∠BPQ=∠A∴△P`NM∽△ACB∴∴MN=2P`M∴S△P`MN=P`M·MN=P`M2=∴當(dāng)1<t≤3時(shí)設(shè)QB`交AC于點(diǎn)H∵∠HQM=∠PQB∴△HMQ∽△PBQ∴∴MH=MQ∴綜合上所述:【點(diǎn)睛】本題是一道關(guān)于相似的綜合題目,難度較大,涉及的知識(shí)點(diǎn)有相似三角形的判定及性質(zhì)、勾股定理、三角形面積公式、旋轉(zhuǎn)的性質(zhì)等,需要有數(shù)形結(jié)合的能力以及較強(qiáng)的計(jì)算能力.20、(1)y=9x+15;(2)y=;(3)15分鐘【解析】(1)設(shè)加熱時(shí)y=kx+b(k≠0),停止加熱后y=a/x(a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函數(shù)求得21、(1)60°;(2)【分析】(1)根據(jù)扇形面積公式求圓心角的度數(shù)即可;(2)由第一問,求得∠BOC的度數(shù),然后利用弧長公式求解.【詳解】由扇形面積公式得:∴的長度為:【點(diǎn)睛】本題考查扇形面積和弧長的求法,熟練掌握公式正確進(jìn)行計(jì)算是本題的解題關(guān)鍵.22、(1)見解析;(2)4.8cm,MN=9.6cm.【分析】?(1)先由切線長定理和平行線的性質(zhì)可求出∠OBC+∠OCB=90°,進(jìn)而可求∠BOC=90°,然后證明∠NMC=90°,即可證明MN是⊙O的切線;(2)連接OF,則OF⊥BC,根據(jù)勾股定理就可以求出BC的長,然后根據(jù)△BOC的面積就可以求出⊙O的半徑,通過證明△NMC∽△BOC,即可求出MN的長.【詳解】(1)證明:∵AB、BC、CD分別與⊙O切于點(diǎn)E、F、G,∴∠OBC=∠ABC,∠OCB=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°.∵M(jìn)N∥OB,∴∠NMC=∠BOC=90°,即MN⊥MC且MO是⊙O的半徑,∴MN是⊙O的切線;(2)解:連接OF,則OF⊥BC,由(1)知,△BOC是直角三角形,∴BC===10,∵S△BOC=?OB?OC=?BC?OF,∴6×8=10×OF,∴OF=4.8cm,∴⊙O的半徑為4.8cm,由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°,∴△NMC∽△BOC,∴,即=,∴MN=9.6(cm).【點(diǎn)睛】本題主要考查的是切線的判定與性質(zhì),切線長定理,三角形內(nèi)角和定理,相似三角形的判定與性質(zhì),平行線的性質(zhì),勾股定理,三角形的面積等有關(guān)知識(shí).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時(shí)用工人員工作態(tài)度
- 高端餐飲金箔施工合同
- 旅游景點(diǎn)樁基施工協(xié)議
- 住宅小區(qū)鋼筋工施工協(xié)議
- 水產(chǎn)養(yǎng)殖學(xué)專業(yè)畢業(yè)生就業(yè)協(xié)議
- 建筑電氣安裝架子工協(xié)議
- 購房合同范例是正式合同
- 挖蟲草顧工合同書
- 工商銀行2012年住房貸款合同內(nèi)容
- 房子搬遷合同范例
- 2023年小學(xué)五年級(jí)綜合實(shí)踐活動(dòng)上冊(cè)期末試卷(5篇)
- 成立項(xiàng)目部紅頭文件完整資料
- LY/T 1923-2020室內(nèi)木質(zhì)門
- GB/T 30444-2013保健服務(wù)業(yè)分類
- GB/T 19418-2003鋼的弧焊接頭缺陷質(zhì)量分級(jí)指南
- GB/T 15900-1995化學(xué)試劑偏重亞硫酸鈉(焦亞硫酸鈉)
- GB/T 15686-2008高粱單寧含量的測定
- GB/T 12615.3-2004封閉型平圓頭抽芯鉚釘06級(jí)
- 《血糖儀POCT臨床操作規(guī)范》考試題及答案
- GA/T 1105-2013信息安全技術(shù)終端接入控制產(chǎn)品安全技術(shù)要求
- 成年依戀量表
評(píng)論
0/150
提交評(píng)論