版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆重慶市一中九年級數(shù)學第一學期期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃2.如圖,菱形的對角線,相交于點,過點作于點,連接,若,,則的長為()A.3 B.4 C.5 D.63.下列事件中,隨機事件是()A.任意畫一個三角形,其內(nèi)角和為180° B.經(jīng)過有交通信號的路口,遇到紅燈C.在只裝了紅球的袋子中摸到白球 D.太陽從東方升起4.設,,是拋物線上的三點,則的大小關系為()A. B. C. D.5.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.6.2的相反數(shù)是()A. B. C. D.7.若α為銳角,且,則α等于()A. B. C. D.8.如圖,在平面直角坐標系中,點P在函數(shù)y=(x>0)的圖象上從左向右運動,PA∥y軸,交函數(shù)y=﹣(x>0)的圖象于點A,AB∥x軸交PO的延長線于點B,則△PAB的面積()A.逐漸變大 B.逐漸變小 C.等于定值16 D.等于定值249.如圖,點D在以AC為直徑的⊙O上,如果∠BDC=20°,那么∠ACB的度數(shù)為()A.20° B.40° C.60° D.70°10.去年某校有1500人參加中考,為了了解他們的數(shù)學成績,從中抽取200名考生的數(shù)學成績,其中有60名考生達到優(yōu)秀,那么該校考生達到優(yōu)秀的人數(shù)約有()A.400名 B.450名 C.475名 D.500名11.在一個不透明的袋子中放有若干個球,其中有6個白球,其余是紅球,這些球除顏色外完全相同.每次把球充分攪勻后,任意摸出一個球記下顏色再放回袋子.通過大量重復試驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.25左右,則紅球的個數(shù)約是()A.2 B.12 C.18 D.2412.已知關于的一元二次方程兩實數(shù)根為、,則()A.3 B.﹣3 C.1 D.﹣1二、填空題(每題4分,共24分)13.如圖,一副含和角的三角板和拼合在一個平面上,邊與重合,.當點從點出發(fā)沿方向滑動時,點同時從點出發(fā)沿射線方向滑動.當點從點滑動到點時,點運動的路徑長為______.14.如圖,點是矩形中邊上一點,將沿折疊為,點落在邊上,若,,則________.15.已知點B位于點A北偏東30°方向,點C位于點A北偏西30°方向,且AB=AC=8千米,那么BC=________千米.16.若點A(-2,a),B(1,b),C(4,c)都在反比例函數(shù)的圖象上,則a、b、c大小關系是________.17.小天想要計算一組數(shù)據(jù)92,90,94,86,99,85的方差S02,在計算平均數(shù)的過程中,將這組數(shù)據(jù)中的每一個數(shù)都減去90,得到一組新數(shù)據(jù)2,0,4,﹣4,9,﹣5,記這組新數(shù)據(jù)的方差為S12,則S12__S02(填“>”,“=”或”<”)18.已知,是方程的兩實數(shù)根,則__.三、解答題(共78分)19.(8分)如圖,是的直徑,直線與相切于點.過點作的垂線,垂足為,線段與相交于點.(1)求證:是的平分線;(2)若,求的長.20.(8分)如圖,在四邊形ABCD中,AD∥BC,AB⊥BD于點B.已知∠A=45°,∠C=60°,,求AD的長.21.(8分)如圖,四邊形中,平分.(1)求證:;(2)求證:點是的中點;(3)若,求的長.22.(10分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.23.(10分)求值:24.(10分)如圖,為的直徑,、為上兩點,,,垂足為.直線交的延長線于點,連接.(1)判斷與的位置關系,并說明理由;(2)求證:.25.(12分)計算:.26.解方程:(1)x2﹣1x+5=0(配方法)(2)(x+1)2=1x+1.
參考答案一、選擇題(每題4分,共48分)1、A【分析】一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.2、A【分析】根據(jù)菱形面積的計算公式求得AC,再利用直角三角形斜邊中線的性質(zhì)即可求得答案.【詳解】∵四邊形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故選:A.【點睛】本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式:菱形的面積等于兩條對角線乘積的一半是解題的關鍵.3、B【分析】由題意根據(jù)隨機事件就是可能發(fā)生也可能不發(fā)生的事件這一定義,依次對選項進行判斷.【詳解】解:A、任意畫一個三角形,其內(nèi)角和為180°,是必然事件,不符合題意;B、經(jīng)過有交通信號的路口遇到紅燈,是隨機事件,符合題意;C、在只裝了紅球的袋子中摸到白球,是不可能事件,不符合題意;D、太陽從東方升起,是必然事件,不符合題意;故選:B.【點睛】本題主要考查必然事件、不可能事件、隨機事件的概念,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.4、D【分析】根據(jù)二次函數(shù)的性質(zhì)得到拋物線的開口向上,對稱軸為直線x=-2,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大?。驹斀狻?,∵a=1>0,∴拋物線開口向上,對稱軸為直線x=-2,∵離直線x=-2的距離最遠,離直線x=-2的距離最近,∴.故選:D.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質(zhì).5、B【分析】根據(jù)俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據(jù)俯視圖是從物體的上面看得到的視圖得出是解題關鍵.6、D【分析】根據(jù)相反數(shù)的概念解答即可.【詳解】2的相反數(shù)是-2,
故選D.7、B【解析】根據(jù)得出α的值.【詳解】解:∵∴α-10°=60°,
即α=70°.
故選:B.【點睛】本題考查特殊角的三角函數(shù)值,特殊角的三角函數(shù)值的計算在中考中經(jīng)常出現(xiàn),題型以選擇題、填空題為主.8、C【分析】根據(jù)反比例函數(shù)k的幾何意義得出S△POC=×2=1,S矩形ACOD=6,即可得出,從而得出,通過證得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【詳解】如圖,由題意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC?PC,S矩形ACOD=OC?AC,∴,∴,∴,∵AB∥軸,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面積等于定值1.故選:C.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及矩形的面積的計算,利用相似三角形面積比等于相似比的平方是解決本題的關鍵.9、D【分析】由AC為⊙O的直徑,可得∠ABC=90°,根據(jù)圓周角定理即可求得答案.【詳解】∵AC為⊙O的直徑,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴.故選:D.【點睛】本題考查了圓周角定理,正確理解直徑所對的圓周角是直角,同圓或等圓中,同弧或等弧所對的圓周角相等是解題的關鍵.10、B【分析】根據(jù)已知求出該??忌膬?yōu)秀率,再根據(jù)該校的總人數(shù),即可求出答案.【詳解】∵抽取200名考生的數(shù)學成績,其中有60名考生達到優(yōu)秀,∴該??忌膬?yōu)秀率是:×100%=30%,∴該校達到優(yōu)秀的考生約有:1500×30%=450(名);故選B.【點睛】此題考查了用樣本估計總體,關鍵是根據(jù)樣本求出優(yōu)秀率,運用了樣本估計總體的思想.11、C【分析】根據(jù)用頻率估計概率可知:摸到白球的概率為0.25,根據(jù)概率公式即可求出小球的總數(shù),從而求出紅球的個數(shù).【詳解】解:小球的總數(shù)約為:6÷0.25=24(個)則紅球的個數(shù)為:24-6=18(個)故選C.【點睛】此題考查的是用頻率估計概率和根據(jù)概率求小球的總數(shù),掌握概率公式是解決此題的關鍵.12、A【解析】根據(jù)根與系數(shù)的關系求解即可.【詳解】∵關于的一元二次方程兩實數(shù)根為、,∴.故選:A.【點睛】本題考查了根與系數(shù)的關系,二次項系數(shù)為1,常用以下關系:、是方程的兩根時,,.二、填空題(每題4分,共24分)13、【分析】過點D'作D'N⊥AC于點N,作D'M⊥BC于點M,由直角三角形的性質(zhì)可得BC=4cm,AB=8cm,ED=DF=6cm,由“AAS”可證△D'NE'≌△D'MF',可得D'N=D'M,即點D'在射線CD上移動,且當E'D'⊥AC時,DD'值最大,則可求點D運動的路徑長,【詳解】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm
如圖,當點E沿AC方向下滑時,得△E'D'F',過點D'作D'N⊥AC于點N,作D'M⊥BC于點M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即點E沿AC方向下滑時,點D'在射線CD上移動,∴當E'D'⊥AC時,DD'值最大,最大值=ED-CD=(12-6)cm
∴當點E從點A滑動到點C時,點D運動的路徑長=2×(12-6)=(24-12)cm【點睛】本題考查了軌跡,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),角平分線的性質(zhì),確定點D的運動軌跡是本題的關鍵.14、5【分析】由矩形的性質(zhì)可得AB=CD=8,AD=BC=10,∠A=∠D=90°,由折疊的性質(zhì)可求BF=BC=10,EF=CE,由勾股定理可求AF的長,CE的長.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=8,AD=BC=10,∠A=∠D=90°,∵將△BCE沿BE折疊為△BFE,在Rt△ABF中,AF==6∴DF=AD-AF=4在Rt△DEF中,DF2+DE2=EF2=CE2,∴16+(8-CE)2=CE2,∴CE=5故答案為:5【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理,靈活運用這些性質(zhì)進行推理是本題的關鍵.15、8【解析】因為點B位于點A北偏東30°方向,點C位于點A北偏西30°方向,所以∠BAC=60°,因為AB=AC,所以△ABC是等邊三角形,所以BC=AB=AC=8千米,故答案為:8.16、a>c>b【分析】根據(jù)題意,分別求出a、b、c的值,然后進行判斷,即可得到答案.【詳解】解:∵點A、B、C都在反比例函數(shù)的圖象上,則當時,則;當時,則;當時,則;∴;故答案為:.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.17、=【分析】根據(jù)一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個非零常數(shù),那么這組數(shù)據(jù)的波動情況不變,即方差不變,即可得出答案.【詳解】∵一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上(或都減去)同一個常數(shù)后,它的平均數(shù)都加上(或都減去)這一個常數(shù),兩數(shù)進行相減,方差不變,∴則S12=S1.故答案為:=.【點睛】本題考查方差的意義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立,關鍵是掌握一組數(shù)據(jù)都加上同一個非零常數(shù),方差不變.18、1【分析】先根據(jù)一元二次方程根的定義得到,則可變形為,再根據(jù)根與系數(shù)的關系得到,,然后利用整體代入的方法計算代數(shù)式的值.【詳解】是方程的實數(shù)根,,,,,是方程的兩實數(shù)根,,,.故答案為1.【點睛】考查了根與系數(shù)的關系:若,是一元二次方程的兩根時,,.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接OC,可證得OC∥AD,根據(jù)平行線性質(zhì)及等腰三角形性質(zhì),可得∠DAC=∠CAO,即得AC平分∠DAB;(2)連接,連接交于點,通過構造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【詳解】(1)證明:如圖,連接,∵與相切于點,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分線;(2)解:如圖,連接,連接交于點,∵是的直徑,∴,∵,∴,∵,∴,∴,為線段中點,∵,,∴,∴,即:,∴,∵,∴,∴,∵為直徑中點,為線段中點,∴.【點睛】本題考查了切線的性質(zhì)、角平分線的性質(zhì)、相似三角形的判定、勾股定理、三角形中位線的性質(zhì)等多方面的知識,是一道綜合題型,考查學生各知識點的綜合運用能力.20、.【分析】過點D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,則可求出DE,由已知可推出∠DBE=∠ADB=45°,根據(jù)直解三角形的邊角關系依次求出BD,AD即可.【詳解】過點D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°∴在Rt△DBE中,∠DEB=90°,,∴,又∵在Rt△ABD中,∠ABD=90°,∠A=45°,∴.【點睛】本題考查了解直角三角形的知識,正確作出輔助線是解題的關鍵.21、(1)見解析;(2)見解析;(3)【分析】(1)通過證明△ABD∽△BCD,可得,可得結論;(2)通過和相似得出∠MBD=∠MDB,在利用同角的余角相等得出∠A=∠ABM,由等腰三角形的性質(zhì)可得結論;(3)由平行線的性質(zhì)可證∠MBD=∠BDC,即可證AM=MD=MB=4,由BD2=AD?CD和勾股定理可求MC的長,通過證明△MNB∽△CND,可得.【詳解】解:(1)證明:∵DB平分∠ADC,
∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,
∴△ABD∽△BCD,∴,∴BD2=AD?CD(2)證明:∵,∴∠MBD=∠BDC,∠MBC=90°,∵∠MDB=∠CDB,∴∠MBD=∠MDB,∴MB=MD,∵∠MBD+∠ABM=90°,∴∠ABM=∠CBD,∵∠CBD=∠A,∴∠A=∠ABM,∴MA=MB,∴MA=MD,即M為AD中點;(3)∵BM∥CD
∴∠MBD=∠BDC
∴∠ADB=∠MBD,且∠ABD=90°
∴BM=MD,∠MAB=∠MBA
∴BM=MD=AM=4
∵BD2=AD?CD,且CD=6,AD=8,
∴BD2=48,
∴BC2=BD2-CD2=12
∴MC2=MB2+BC2=28
∴MC=,∵BM∥CD
∴△MNB∽△CND∴,且MC=,∴.【點睛】本題考查了相似三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),勾股定理,直角三角形的性質(zhì),求MC的長度是本題的關鍵.22、(1)1﹣15;(2)15π【分析】(1)連接OE,過O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的長,進而求得EB的長.(2)連接OD,則在直角三角形ODQ中,可求得∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,則得出的長度.【詳解】解:(1)連接OE,過O作OF⊥BM于F,則四邊形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)連接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π?60=15π.【點睛】本題考查了直角三角形的性質(zhì),弧長的計算、矩形的性質(zhì)以及垂徑定理,是基礎知識要熟練掌握.23、2.【分析】先將三角函數(shù)值代入,再根據(jù)混合運算順序依此計算可得.【詳解】原式=【點睛】本題主要考查了特殊角的三角函數(shù)值,解題的關鍵是熟練掌握各特殊角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防培訓方案
- 2024年醫(yī)用設備維修合同范本
- 等級保護三級相關要求
- 股權轉(zhuǎn)讓協(xié)議書范本 格式 樣本 樣式 協(xié)議
- 住宅租賃合同撰寫指南
- 員工專業(yè)技能培訓合同
- 2024年委托貸款協(xié)議合同
- 出口代理協(xié)議范本模板
- 個人融資協(xié)議書合同范本撰寫指南
- 2024年簡單店面租賃合同2
- 肺脹(慢性阻塞性肺病)中醫(yī)優(yōu)勢病種診療方案
- 鐵路交通安全主題班會課件
- 2024年專技人員公需科目考試答
- 數(shù)學蘇教版四年級(上冊)1、解決問題的策略 蘇教版(共13張)
- 2023-2024學年北京市某中學七年級上學期期中考試地理試卷(含詳解)
- 落實《中小學德育工作指南》制定的實施方案(pdf版)
- 調(diào)味品品牌授權銷售合作協(xié)議(2024年版)
- 中國軟件行業(yè)基準數(shù)據(jù)報告(SSM-BK-202409)
- 2024新華社招考應屆高校畢業(yè)生(高頻重點提升專題訓練)共500題附帶答案詳解
- 人教版體育與健康八年級9武術《健身南拳》參考教學設計
- 2024年全國軟件水平考試之高級網(wǎng)絡規(guī)劃設計師考試重點黑金模擬題(附答案)
評論
0/150
提交評論