




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市明達中學2024屆數(shù)學高二第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x,y,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列滿足=f(0),且f()=(),則的值為()A.2209 B.3029 C.4033 D.22492.已知a=log34,b=,c=,則a,b,c的大小關(guān)系為()A.a(chǎn)>b>c B.b>c>aC.c>a>b D.b>a>c3.設(shè)全集,集合,,則()A. B. C. D.4.設(shè)為中的三邊長,且,則的取值范圍是()A. B.C. D.5.某大學安排5名學生去3個公司參加社會實踐活動,每個公司至少1名同學,安排方法共有()種A.60 B.90 C.120 D.1506.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在A.第一象限 B.第二象限 C.第三象限 D.第四象限7.有一個偶數(shù)組成的數(shù)陣排列如下:248142232…610162434……12182636………202838…………3040……………42…………………則第20行第4列的數(shù)為()A.546 B.540 C.592 D.5988.已知具有線性相關(guān)關(guān)系的兩個變量,的一組數(shù)據(jù)如下表:245682040607080根據(jù)上表,利用最小二乘法得到關(guān)于的線性回歸方程為,則的值為()A.1 B.1.5 C.2 D.2.59.已知數(shù)列的通項公式為,則()A.-1 B.3 C.7 D.910.已知展開式的常數(shù)項為15,則()A. B.0 C.1 D.-111.某快遞公司共有人,從周一到周日的七天中,每天安排一人送貨,每人至少送貨天,其不同的排法共有()種.A. B. C. D.12.函數(shù)的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知隨機變量服從正態(tài)分布,,則.14.一個袋中有形狀、大小完全相同的個小球,其中個紅球,其余為白球.從中一次性任取個小球,將“恰好含有個紅球”的概率記為,則當__________時,取得最大值.15.某校畢業(yè)典禮由6個節(jié)目組成,考慮整體效果,對節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起,則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有______種.16..若為真命題,則實數(shù)的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的最小值;(2)已知為正數(shù),且,求證.18.(12分)已知是定義在上的奇函數(shù),且當時,.(Ⅰ)求的解析式;(Ⅱ)解不等式.19.(12分)已知函數(shù).(1)證明:;(2)若對任意的均成立,求實數(shù)的最小值.20.(12分)已知橢圓過點,且離心率為.(Ⅰ)求橢圓的方程;(Ⅱ)為橢圓的左、右頂點,直線與軸交于點,點是橢圓上異于的動點,直線分別交直線于兩點.證明:恒為定值.21.(12分)小王每天自己開車上班,他在路上所用的時間(分鐘)與道路的擁堵情況有關(guān).小王在一年中隨機記錄了200次上班在路上所用的時間,其頻數(shù)統(tǒng)計如下表,用頻率近似代替概率.(分鐘)15202530頻數(shù)(次)50506040(Ⅰ)求小王上班在路上所用時間的數(shù)學期望;(Ⅱ)若小王一周上班5天,每天的道路擁堵情況彼此獨立,設(shè)一周內(nèi)上班在路上所用時間不超過的天數(shù)為,求的分布列及數(shù)學期望.22.(10分)在平面直角坐標系中,曲線:,曲線:(為參數(shù)),以坐標原點為極點,軸正半軸為極軸,建立極坐標系.(1)求曲線,的極坐標方程;(2)曲線:(為參數(shù),,),分別交,于,兩點,當取何值時,取得最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
因為該題為選擇題,可采用特殊函數(shù)來研究,根據(jù)條件,底數(shù)小于1的指數(shù)函數(shù)滿足條件,可設(shè)函數(shù)為,從而求出,再利用題目中所給等式可證明數(shù)列為等差數(shù)列,最后利用等差數(shù)列定義求出結(jié)果?!绢}目詳解】根據(jù)題意,可設(shè),則,因為,所以,所以,所以數(shù)列數(shù)以1為首項,2為公差的等差數(shù)列,所以,所以,故選C。【題目點撥】本題考查選擇題中的特殊法解決問題,對于選擇題則可以找到滿足題意的特殊值或者特殊函數(shù)直接代入進行求解。2、B【解題分析】
得出,從而得到的大小關(guān)系,得到答案.【題目詳解】由題意,根據(jù)對數(shù)的運算可得,所以,故選B.【題目點撥】本題主要考查了對數(shù)的換底公式,以及對數(shù)的單調(diào)性、指數(shù)的運算的應(yīng)用,其中解答中熟記對數(shù)的運算性質(zhì),合理運算時解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解題分析】
求得,即可求得,再求得,利用交集運算得解.【題目詳解】由得:或,所以,所以由可得:或所以所以故選:B【題目點撥】本題主要考查了對數(shù)函數(shù)的性質(zhì),還考查了補集、交集的運算,屬于基礎(chǔ)題.4、B【解題分析】
由,則,再根據(jù)三角形邊長可以證得,再利用不等式和已知可得,進而得到,再利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,求得函數(shù)的最小值,即可求解.【題目詳解】由題意,記,又由,則,又為△ABC的三邊長,所以,所以,另一方面,由于,所以,又,所以,不妨設(shè),且為的三邊長,所以.令,則,當時,可得,從而,當且僅當時取等號.故選B.【題目點撥】本題主要考查了解三角形,綜合了函數(shù)和不等式的綜合應(yīng)用,以及基本不等式和導(dǎo)數(shù)的應(yīng)用,屬于綜合性較強的題,難度較大,著重考查了分析問題和解答問題的能力,屬于難題.5、D【解題分析】分析:由題意結(jié)合排列組合公式整理計算即可求得最終結(jié)果.詳解:由題意可知,5人的安排方案為或,結(jié)合平均分組計算公式可知,方案為時的方法有種,方案為時的方法有種,結(jié)合加法公式可知安排方法共有種.本題選擇D選項.點睛:(1)解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質(zhì)進行分類;二是按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組,注意各種分組類型中,不同分組方法的求法.6、B【解題分析】因,故復(fù)數(shù)對應(yīng)的點在第二象限,應(yīng)選答案B.7、A【解題分析】分析:觀察數(shù)字的分布情況,可知從右上角到左下角的一列數(shù)成公差為2的等差數(shù)列,想求第20行第4列的數(shù),只需求得23行第一個數(shù)再減去即可,進而歸納每一行第一個數(shù)的規(guī)律即可得出結(jié)論.詳解:順著圖中直線的方向,從上到下依次成公差為2的等差數(shù)列,要想求第20行第4列的數(shù),只需求得23行第一個數(shù)再減去即可.觀察可知第1行的第1個數(shù)為:;第2行第1個數(shù)為:;第3行第1個數(shù)為:.……第23行第1個數(shù)為:.所以第20行第4列的數(shù)為.故選A.點睛:此題考查歸納推理,解題的關(guān)鍵是通過觀察得出數(shù)字的排列規(guī)律,是中檔題.8、B【解題分析】
回歸直線經(jīng)過樣本中心點.【題目詳解】樣本中心點為,因為回歸直線經(jīng)過樣本中心點,所以,.故選B.【題目點撥】本題考查回歸直線的性質(zhì).9、C【解題分析】
直接將代入通項公式,可得答案.【題目詳解】數(shù)列的通項公式為.所以當時,.故選:C【題目點撥】本題考查求數(shù)列中的項,屬于基礎(chǔ)題.10、A【解題分析】
先求出二項式展開式的通項公式,再令的冪指數(shù)等于0,求得的值,即可求得展開式中的常數(shù)項,再根據(jù)常數(shù)項為15,求得的值.【題目詳解】解:二項式的展開式的通項公式為,令,求得,可得展開式中的常數(shù)項為,由此求得,故選:.【題目點撥】本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.11、C【解題分析】分析:把天分成天組,然后人各選一組值班即可.詳解:天分成天,天,天組,人各選一組值班,共有種,故選C.點睛:本題主要考查分組與分配問題問題,著重考查分步乘法計數(shù)原理,意在考查綜合運用所學知識解決實際問題的能力,屬于中檔題.12、A【解題分析】
求導(dǎo),判斷導(dǎo)函數(shù)函數(shù)值的正負,從而判斷函數(shù)的單調(diào)性,通過單調(diào)性判斷選項.【題目詳解】解:當時,,則,若,,,若,,,則恒成立,即當時,恒成立,則在上單調(diào)遞減,
故選:A.【題目點撥】本題主要考查函數(shù)的圖象,可以通過函數(shù)的性質(zhì)進行排除,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、0.16【解題分析】試題分析:因為隨機變量服從正態(tài)分布,所以正態(tài)曲線的對稱軸為.由及正態(tài)分布的性質(zhì),考點:正態(tài)分布及其性質(zhì).14、20【解題分析】分析:由題意可知,滿足超幾何分布,列出的公式,建立與的表達式,求最大值。詳解:,取得最大值,也即是取最大,所以:解得,故。點睛:組合數(shù)的最大值,可以理解為數(shù)列的最大項來處理。15、1【解題分析】分析:把丙丁捆綁在一起,作為一個元素排列,然后把甲插入,注意丙丁這個元素的位置不同決定著甲插入的方法數(shù)的不同.詳解:.故答案為1.點睛:本題考查排列組合的應(yīng)用.排列組合中如果有元素相鄰,則可用捆綁法,即相鄰的元素捆綁在一起作為一個元素進行排列,當然它們之間也要全排列,特殊元素可優(yōu)先考慮.注意分類與分步結(jié)合,不重不漏.16、【解題分析】
根據(jù)題意轉(zhuǎn)化為,利用,可將函數(shù)進行換元,利用對勾函數(shù)求函數(shù)的最大值.【題目詳解】當時,又,設(shè),設(shè)當時,取得最大值.若為真命題,,即,的最大值是5.故填:5.【題目點撥】本題考查了根據(jù)全稱命題的真假,求參數(shù)取值范圍的問題,考查了轉(zhuǎn)化與化歸的思想,若存在,使,即,若,使恒成立,所以,需注意時任意還是存在問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3;(2)證明見解析.【解題分析】
(1)利用絕對值不等式求得函數(shù)的最小值.(2)利用基本不等式,證得不等式成立.【題目詳解】(1)依題意,當且僅當時,取得最小值,故的最小值為.(2)由(1)知,,當且僅當時等號成立.【題目點撥】本小題主要考查利用絕對值不等求得最小值,考查利用基本不等式證明不等式,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ).【解題分析】
(Ⅰ)當時,,因為是定義在上的奇函數(shù),所以可得;,進而求出解析式.(Ⅱ)由(Ⅰ)可得出函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【題目詳解】(Ⅰ)當時,,因為是定義在上的奇函數(shù)所以;當時,;所以(Ⅱ)易知當時,單調(diào)遞增,又是定義在上的奇函數(shù),所以在上單調(diào)遞增,所以不等式等價于,解得,所以原不等式的解集為.【題目點撥】本題考查函數(shù)的奇偶性與單調(diào)性,解題的關(guān)鍵是由奇偶性先求出解析式,屬于一般題.19、(1)證明見解析(2)【解題分析】
(1)由可得,再構(gòu)造函數(shù),分析函數(shù)單調(diào)性求最值證明即可.(2)根據(jù)題意構(gòu)造函數(shù),再根據(jù)的正負分析函數(shù)的單調(diào)性可知為最大值,進而求得實數(shù)的最小值即可.【題目詳解】(1)證明:由,得,.設(shè),所以,函數(shù)在上單調(diào)遞增,在單調(diào)遞減,所以,.又因為(其中),所以,,所以,成立.(2)解:設(shè),.,,所以,.下面證明當時,成立.,因為,所以,所以.又因為當時,,所以,所以,所以,當時,.故,.所以,的最大值為,所以,的最小值為.【題目點撥】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)不等式的問題,同時也考查了數(shù)列中求最大值項的方法.需要構(gòu)造數(shù)列求解的正負判斷,屬于難題.20、(Ⅰ).(Ⅱ)為定值.證明見解析.【解題分析】本試題主要是考出了橢圓方程的求解,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系的運用的綜合考查,體現(xiàn)了運用代數(shù)的方法解決解析幾何的本質(zhì)的運用.(1)首先根據(jù)題意的幾何性質(zhì)來表示得到關(guān)于a,b,c的關(guān)系式,從而得到其橢圓的方程.(2設(shè)出直線方程,設(shè)點P的坐標,點斜式得到AP的方程,然后聯(lián)立方程組,可知借助于韋達定理表示出長度,進而證明為定值.(Ⅰ)解:由題意可知,,,解得.…………4分所以橢圓的方程為.…………5分(Ⅱ)證明:由(Ⅰ)可知,,.設(shè),依題意,于是直線的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 食用玫瑰收購合同范本
- 工廠管道改造合同范本
- 聘任制合同范本
- 水刀訂購合同范本
- 入圍方式、備考建議2024強基計劃備考必看
- 品牌西裝租借合同范本
- 極簡學術(shù)答辯模板-1
- 2025年標準多人勞動合同模板
- 2025工程承包合同(承包方)范本
- 2025溫室用地租賃合同
- 高考語文復(fù)習:詩歌語言鑒賞
- 泌尿外科常見疾病診療指南
- 學校開展“躺平式”教師專項整治工作實施方案心得體會2篇
- 急救物品藥品管理制度-課件
- 汕尾品清湖新區(qū)揭牌儀式活動V1-0110
- 蘇教版三年級下冊口算題大全(全冊完整14份)
- 漢語教程第二冊(上)課后習題與講解
- 激光切割機日常點檢表
- 電力系統(tǒng)中性點的運行方式
- 基本公共衛(wèi)生服務(wù)項目自查自評報告2
- GB/T 7307-200155°非密封管螺紋
評論
0/150
提交評論