初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)_第1頁(yè)
初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)_第2頁(yè)
初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)_第3頁(yè)
初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)_第4頁(yè)
初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Word文檔初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)工作閱歷需要去累積,不斷反思和總結(jié),能在崗位上更好的去做好工作,取得長(zhǎng)進(jìn),工作了一段時(shí)光,就要去好好的把過(guò)往工作總結(jié)好。下面是由我我為大家收拾的《初中數(shù)學(xué)二次函數(shù)學(xué)問(wèn)點(diǎn)總結(jié)》。

i.定義與定義表達(dá)式

普通地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

(a,b,c為常數(shù),a0,且a打算函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,iai還可以打算開口大小,iai越大開口就越小,iai越小開口就越大.)則稱y為x的二次函數(shù)。

二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

ii.二次函數(shù)的三種表達(dá)式

普通式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)p(h,k)]

交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線]

注:在3種形式的相互轉(zhuǎn)化中,有如下關(guān)系:

h=-b/2ak=(4ac-b^2)/4ax,x=(-bb^2-4ac)/2a

iii.二次函數(shù)的圖像

在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

iv.拋物線的性質(zhì)

1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。

對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)p。特殊地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

2.拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為:p(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)=b^2-4ac=0時(shí),p在x軸上。

3.二次項(xiàng)系數(shù)a打算拋物線的開口方向和大小。

當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同打算對(duì)稱軸的位置。

當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;

當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。

5.常數(shù)項(xiàng)c打算拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個(gè)數(shù)

=b^2-4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

=b^2-4ac0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。x的取值是虛數(shù)(x=-bb^2-4ac的值的相反數(shù),乘上虛數(shù)i,囫圇式子除以2a)

v.二次函數(shù)與一元二次方程

特殊地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象外形相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸:

當(dāng)h0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

因此,討論拋物線y=ax^2+bx+c(a0)的圖象,通過(guò)配方,將普通式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清晰了.這給畫圖象提供了便利.

2.拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開口向上,當(dāng)a0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

3.拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x-b/2a時(shí),y隨x的增大而減小;當(dāng)x-b/2a時(shí),y隨x的增大而增大.若a0,當(dāng)x-b/2a時(shí),y隨x的增大而增大;當(dāng)x-b/2a時(shí),y隨x的增大而減小.

4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

(2)當(dāng)△=b^2-4ac0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a0)的兩根.這兩點(diǎn)間的距離ab=|x-x|

當(dāng)△=0.圖象與x軸惟獨(dú)一個(gè)交點(diǎn);

當(dāng)△0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0.

5.拋物線y=ax^2+bx+c的最值:假如a0(a0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值

6.用待定系數(shù)法求二次函數(shù)的解析式

(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為普通形式:

y=ax^2+bx+c(a0).

(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a0).

(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a0).

7.二次函數(shù)學(xué)問(wèn)很簡(jiǎn)單與其它學(xué)問(wèn)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)學(xué)問(wèn)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式浮現(xiàn).

Gz85.Com更多工作總結(jié)范文我推舉

高中數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)——函數(shù)

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對(duì)數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中xk+/2;

6、假如函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配辦法

三、函數(shù)的值域的常用求法:

1、換元法;2、配辦法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

四、函數(shù)的最值的常用求法:

1、配辦法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、假如一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,假如一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

初中數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)

第一章圖形的變換

考點(diǎn)一、平移(3~5分)

1、定義

把一個(gè)圖形整體沿某一方向移動(dòng),會(huì)得到一個(gè)新的圖形,新圖形與原圖形的外形和大小徹低相同,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱平移。

2、性質(zhì)

(1)平移不轉(zhuǎn)變圖形的大小和外形,但圖形上的每個(gè)點(diǎn)都沿同一方向舉行了移動(dòng)

(2)銜接各組對(duì)應(yīng)點(diǎn)的線段平行(或在同向來(lái)線上)且相等。

考點(diǎn)二、軸對(duì)稱(3~5分)

1、定義

把一個(gè)圖形沿著某條直線折疊,假如它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱,該直線叫做對(duì)稱軸。

2、性質(zhì)

(1)關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形。

(2)假如兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線。

(3)兩個(gè)圖形關(guān)于某直線對(duì)稱,假如它們的對(duì)應(yīng)線段或延伸線相交,那么交點(diǎn)在對(duì)稱軸上。

3、判定

假如兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

4、軸對(duì)稱圖形

把一個(gè)圖形沿著某條直線折疊,假如直線兩旁的部分能夠相互重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸。

考點(diǎn)三、旋轉(zhuǎn)(3~8分)

1、定義

把一個(gè)圖形繞某一點(diǎn)o轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。

2、性質(zhì)

(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。

(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。

考點(diǎn)四、中心對(duì)稱(3分)

1、定義

把一個(gè)圖形圍著某一個(gè)點(diǎn)旋轉(zhuǎn)180,假如旋轉(zhuǎn)后的圖形能夠和本來(lái)的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。

2、性質(zhì)

(1)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形。

(2)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分。

(3)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或在同向來(lái)線上)且相等。

3、判定

假如兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。

4、中心對(duì)稱圖形

把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180,假如旋轉(zhuǎn)后的圖形能夠和本來(lái)的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)店就是它的對(duì)稱中心。

考點(diǎn)五、坐標(biāo)系中對(duì)稱點(diǎn)的特征(3分)

1、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征

兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為p(-x,-y)

2、關(guān)于x軸對(duì)稱的點(diǎn)的特征

兩個(gè)點(diǎn)關(guān)于x軸對(duì)稱時(shí),它們的坐標(biāo)中,x相等,y的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為p(x,-y)

3、關(guān)于y軸對(duì)稱的點(diǎn)的特征

兩個(gè)點(diǎn)關(guān)于y軸對(duì)稱時(shí),它們的坐標(biāo)中,y相等,x的符號(hào)相反,即點(diǎn)p(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為p(-x,y)

其次章圖形的相像

考點(diǎn)一、比例線段(3分)

1、比例線段的相關(guān)概念

假如選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分離為m,n,那么就說(shuō)這兩條線段的比是,或?qū)懗蒩:b=m:n

在兩條線段的比a:b中,a叫做比的前項(xiàng),b叫做比的后項(xiàng)。

在四條線段中,假如其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡(jiǎn)稱比例線段

若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項(xiàng),線段a,d叫做比例外項(xiàng),線段b,c叫做比例內(nèi)項(xiàng),線段的d叫做a,b,c的第四比例項(xiàng)。

假如作為比例內(nèi)項(xiàng)的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項(xiàng)。

2、比例的性質(zhì)

(1)基本性質(zhì)

①a:b=c:dad=bc

②a:b=b:c

(2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng))

(交換內(nèi)項(xiàng))

(交換外項(xiàng))

(同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))

(3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):

(4)合比性質(zhì):

(5)等比性質(zhì):

3、黃金分割

把線段ab分成兩條線段ac,bc(acbc),并且使ac是ab和bc的比例中項(xiàng),叫做把線段ab黃金分割,點(diǎn)c叫做線段ab的黃金分割點(diǎn),其中ac=ab0.618ab

考點(diǎn)二、平行線分線段成比例定理(3~5分)

三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。

推論:

(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延伸線),所得的對(duì)應(yīng)線段成比例。

逆定理:假如一條直線截三角形的兩邊(或兩邊的延伸線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。

(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例。

考點(diǎn)三、相像三角形(3~8分)

1、相像三角形的概念

對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相像三角形。相像用符號(hào)∽來(lái)表示,讀作相像于。相像三角形對(duì)應(yīng)邊的比叫做相像比(或相像系數(shù))。

2、相像三角形的基本定理

平行于三角形一邊的直線和其他兩邊(或兩邊的延伸線)相交,所構(gòu)成的三角形與原三角形相像。

用數(shù)學(xué)語(yǔ)言表述如下:

∵de∥bc,△ade∽△abc

相像三角形的等價(jià)關(guān)系:

(1)反身性:對(duì)于任一△abc,都有△abc∽△abc;

(2)對(duì)稱性:若△abc∽△abc,則△abc∽△abc

(3)傳遞性:若△abc∽△abc,并且△abc∽△abc,則△abc∽△abc。

3、三角形相像的判定

(1)三角形相像的判定辦法

①定義法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相像

②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延伸線)相交,所構(gòu)成的三角形與原三角形相像

③判定定理1:假如一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相像,可簡(jiǎn)述為兩角對(duì)應(yīng)相等,兩三角形相像。

④判定定理2:假如一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)相等,并且?jiàn)A角相等,那么這兩個(gè)三角形相像,可簡(jiǎn)述為兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相像。

⑤判定定理3:假如一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相像,可簡(jiǎn)述為三邊對(duì)應(yīng)成比例,兩三角形相像

(2)直角三角形相像的判定辦法

①以上各種判定辦法均適用

②定理:假如一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相像

③垂直法:直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形相像。

4、相像三角形的性質(zhì)

(1)相像三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

(2)相像三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相像比

(3)相像三角形周長(zhǎng)的比等于相像比

(4)相像三角形面積的比等于相像比的平方。

5、相像多邊形

(1)假如兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相像多邊形。相像多邊形對(duì)應(yīng)邊的比叫做相像比(或相像系數(shù))

(2)相像多邊形的性質(zhì)

①相像多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例

②相像多邊形周長(zhǎng)的比、對(duì)應(yīng)對(duì)角線的比都等于相像比

③相像多邊形中的對(duì)應(yīng)三角形相像,相像比等于相像多邊形的相像比

④相像多邊形面積的比等于相像比的平方

6、位似圖形

假如兩個(gè)圖形不僅是相像圖形,而且每組對(duì)應(yīng)點(diǎn)所在直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相像比叫做位似比。

性質(zhì):每一組對(duì)應(yīng)點(diǎn)和位似中心在同向來(lái)線上,它們到位似中心的距離之比都等于位似比。

由一個(gè)圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個(gè)圖形放大或縮小。

初中數(shù)學(xué)學(xué)問(wèn)點(diǎn)總結(jié)歸納

一、基本學(xué)問(wèn)

一、數(shù)與代數(shù)a、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③假如兩個(gè)數(shù)惟獨(dú)符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

肯定值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的肯定值。②正數(shù)的肯定值是他的本身、負(fù)數(shù)的肯定值是他的相反數(shù)、0的肯定值是0。兩個(gè)負(fù)數(shù)比較大小,肯定值大的反而小。

有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把肯定值相加。②異號(hào)相加,肯定值相等時(shí)和為0;肯定值不等時(shí),取肯定值較大的數(shù)的符號(hào),并用較大的肯定值減去較小的肯定值。③一個(gè)數(shù)與0相加不變。

減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),肯定值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。

乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

混合挨次:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

2、實(shí)數(shù)無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)

平方根:①假如一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。②假如一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。

立方根:①假如一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。

實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),肯定值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),肯定值的意義徹低一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

3、代數(shù)式

代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

4、整式與分式

整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,全部字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

整式運(yùn)算:加減運(yùn)算時(shí),假如碰到括號(hào)先去括號(hào),再合并同類項(xiàng)。

冪的運(yùn)算:am+an=a(m+n)

(am)n=amn

(a/b)n=an/bn除法一樣。

整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分離相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是按照分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

公式兩條:平方差公式/徹低平方公式

整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分離相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分離除以單項(xiàng)式,再把所得的商相加。

分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

辦法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

分式:①整式a除以整式b,假如除式b中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

分式的運(yùn)算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

b、方程與不等式

1、方程與方程組

一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。

二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。

解二元一次方程組的辦法:代入消元法/加減消元法。

一元二次方程:惟獨(dú)一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程

1)一元二次方程的二次函數(shù)的關(guān)系

大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好似解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特別狀況,就是當(dāng)y的0的時(shí)候就構(gòu)成了一元二次方程了。那假如在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與x軸的交點(diǎn)。也就是該方程的解了

2)一元二次方程的解法

大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,由于在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出全部的一元一次方程的解

(1)配辦法

利用配方,使方程變?yōu)閺氐推椒焦?,在用直接開平辦法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

(3)公式法

這辦法也可以是在解一元二次方程的萬(wàn)能辦法了,方程的根x1={-b+[b2-4ac)]}/2a,x2={-b-[b2-4ac)]}/2a

3)解一元二次方程的步驟:

(1)配辦法的步驟:

先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成徹低平方公式

(2)分解因式法的步驟:

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,假如可以,就可以化為乘積的形式

(3)公式法

就把一元二次方程的各系數(shù)分離代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

4)韋達(dá)定理

利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

5)一元一次方程根的狀況

利用根的判別式去了解,根的判別式可在書面上可以寫為△,讀作diaota,而△=b2-4ac,這里可以分為3種狀況:

i當(dāng)△0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

ii當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

iii當(dāng)△0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)

2、不等式與不等式組

不等式:①用符號(hào)〉,=,〈號(hào)銜接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。

不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個(gè)含有未知數(shù)的不等式的全部解,組成這個(gè)不等式的解集。③求不等式解集的過(guò)程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

一元一次不等式組:①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過(guò)程,叫做解不等式組。

一元一次不等式的符號(hào)方向:

在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算轉(zhuǎn)變。

在不等式中,假如加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:ab,a+cb+c

在不等式中,假如減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:ab,a-cb-c

在不等式中,假如乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:ab,acbc(c0)

在不等式中,假如乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:ab,ac

假如不等式乘以0,那么不等號(hào)改為等號(hào)

所以在題目中,要求出乘以的數(shù),那么就要看看題中是否浮現(xiàn)一元一次不等式,假如浮現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

3、函數(shù)

變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

一次函數(shù):①若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。②當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量x與對(duì)應(yīng)的因變量y的值分離作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),全部這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)y=kx的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)k〈0,b〈o,則經(jīng)234象限;當(dāng)k〈0,b〉0時(shí),則經(jīng)124象限;當(dāng)k〉0,b〈0時(shí),則經(jīng)134象限;當(dāng)k〉0,b〉0時(shí),則經(jīng)123象限。④當(dāng)k〉0時(shí),y的值隨x值的增大而增大,當(dāng)x〈0時(shí),y的值隨x值的增大而削減。

二空間與圖形

a、圖形的熟悉

1、點(diǎn),線,面

點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

綻開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的全部側(cè)棱長(zhǎng)相等,棱柱的上下底面的外形相同,側(cè)面的外形都是長(zhǎng)方體。②n棱柱就是底面圖形有n條邊的棱柱。

截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

視圖:主視圖,左視圖,鳥瞰圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。

2、角

線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延伸就形成了射線。射線惟獨(dú)一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延伸就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且惟獨(dú)一條直線。

比較長(zhǎng)短:①兩點(diǎn)之間的全部連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。

角的比較:①角也可以看成是由一條射線圍著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線圍著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且惟獨(dú)一條直線與這條直線平行。③假如兩條直線都與第3條直線平行,那么這兩條直線相互平行。

垂直:①假如兩條直線相交成直角,那么這兩條直線相互垂直。②相互垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且惟獨(dú)一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這按照射線和直線可以無(wú)限延伸有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

垂直平分線定理:

性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上

角平分線:把一個(gè)角平分的射線叫該角的角平分線。

定義中有幾個(gè)要點(diǎn)要注重一下的,就是角的角平分線是一條射線,不是線段也不是直線,無(wú)數(shù)時(shí),在題目中會(huì)浮現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)

性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上

正方形:一組鄰邊相等的矩形是正方形

性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

判定:1、對(duì)角線相等的菱形2、鄰邊相等的矩形

二、基本定理

1、過(guò)兩點(diǎn)有且惟獨(dú)一條直線

2、兩點(diǎn)之間線段最短

3、同角或等角的補(bǔ)角相等

4、同角或等角的余角相等

5、過(guò)一點(diǎn)有且惟獨(dú)一條直線和已知直線垂直

6、直線外一點(diǎn)與直線上各點(diǎn)銜接的全部線段中,垂線段最短

7、平行公理經(jīng)過(guò)直線外一點(diǎn),有且惟獨(dú)一條直線與這條直線平行

8、假如兩條直線都和第三條直線平行,這兩條直線也相互平行

9、同位角相等,兩直線平行

10、內(nèi)錯(cuò)角相等,兩直線平行

11、同旁內(nèi)角互補(bǔ),兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內(nèi)錯(cuò)角相等

14、兩直線平行,同旁內(nèi)角互補(bǔ)

15、定理三角形兩邊的和大于第三邊

16、推論三角形兩邊的差小于第三邊

17、三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180

18、推論1直角三角形的兩個(gè)銳角互余

19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

22、邊角邊公理(sas)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

23、角邊角公理(asa)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

24、推論(aas)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

25、邊邊邊公理(sss)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

26、斜邊、直角邊公理(hl)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

29、角的平分線是到角的兩邊距離相等的全部點(diǎn)的集合

30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高相互重合

33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60

34、等腰三角形的判定定理假如一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

35、推論1三個(gè)角都相等的三角形是等邊三角形

36、推論2有一個(gè)角等于60的等腰三角形是等邊三角形

37、在直角三角形中,假如一個(gè)銳角等于30那么它所對(duì)的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊上的一半

39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的全部點(diǎn)的集合

42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

43、定理2假如兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,假如它們的對(duì)應(yīng)線段或延伸線相交,那么交點(diǎn)在對(duì)稱軸上

45、逆定理假如兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理假如三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

48、定理四邊形的內(nèi)角和等于360

49、四邊形的外角和等于360

50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)180

51、推論隨意多邊的外角和等于360

52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等

53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等

54、推論夾在兩條平行線間的平行線段相等

55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線相互平分

56、平行四邊形判定定理1兩組對(duì)角分離相等的四邊形是平行四邊形

57、平行四邊形判定定理2兩組對(duì)邊分離相等的四邊形是平行四邊形

58、平行四邊形判定定理3對(duì)角線相互平分的四邊形是平行四邊形

59、平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形

60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角

61、矩形性質(zhì)定理2矩形的對(duì)角線相等

62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形

63、矩形判定定理2對(duì)角線相等的平行四邊形是矩形

64、菱形性質(zhì)定理1菱形的四條邊都相等

65、菱形性質(zhì)定理2菱形的對(duì)角線相互垂直,并且每一條對(duì)角線平分一組對(duì)角

66、菱形面積=對(duì)角線乘積的一半,即s=(ab)2

67、菱形判定定理1四邊都相等的四邊形是菱形

68、菱形判定定理2對(duì)角線相互垂直的平行四邊形是菱形

69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且相互垂直平分,每條對(duì)角線平分一組對(duì)角

71、定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

72、定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

73、逆定理假如兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

75、等腰梯形的兩條對(duì)角線相等

76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

77、對(duì)角線相等的梯形是等腰梯形

78、平行線等分線段定理假如一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半l=(a+b)2s=lh

83、(1)比例的基本性質(zhì):假如a:b=c:d,那么ad=bc假如ad=bc,那么a:b=c:d

84、(2)合比性質(zhì):假如a/b=c/d,那么(ab)/b=(cd)/d

85、(3)等比性質(zhì):假如a/b=c/d==m/n(b+d++n0),

那么(a+c++m)/(b+d++n)=a/b

86、平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延伸線),所得的對(duì)應(yīng)線段成比例

88、定理假如一條直線截三角形的兩邊(或兩邊的延伸線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延伸線)相交,所構(gòu)成的三角形與原三角形相像

91、相像三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相像(asa)

92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相像

93、判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相像(sas)

94、判定定理3三邊對(duì)應(yīng)成比例,兩三角形相像(sss)

95、定理假如一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相像

96、性質(zhì)定理1相像三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相像比

97、性質(zhì)定理2相像三角形周長(zhǎng)的比等于相像比

98、性質(zhì)定理3相像三角形面積的比等于相像比的平方

99、隨意銳角的正弦值等于它的余角的余弦值,隨意銳角的余弦值等于它的余角的正弦值

100、隨意銳角的正切值等于它的余角的余切值,隨意銳角的余切值等于它的余角的正切值

101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

104、同圓或等圓的半徑相等

105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

109、定理不在同向來(lái)線上的三點(diǎn)確定一個(gè)圓。

110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

111、推論1

①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

112、推論2圓的兩條平行弦所夾的弧相等

113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

114、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

115、推論在同圓或等圓中,假如兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

116、定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

117、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

118、推論2半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是直徑

119、推論3假如三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

120、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

121、①直線l和⊙o相交d

②直線l和⊙o相切d=r

③直線l和⊙o相離dr

122、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

124、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

126、切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

127、圓的外切四邊形的兩

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論