![2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M00/2D/2F/wKhkGWW3GJiAABv5AAGNjmFxiPk736.jpg)
![2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M00/2D/2F/wKhkGWW3GJiAABv5AAGNjmFxiPk7362.jpg)
![2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M00/2D/2F/wKhkGWW3GJiAABv5AAGNjmFxiPk7363.jpg)
![2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M00/2D/2F/wKhkGWW3GJiAABv5AAGNjmFxiPk7364.jpg)
![2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M00/2D/2F/wKhkGWW3GJiAABv5AAGNjmFxiPk7365.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆江西省寧都縣第二中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.下列方程式屬于一元二次方程的是()A. B. C. D.2.如圖,是的內(nèi)接正十邊形的一邊,平分交于點,則下列結(jié)論正確的有()①;②;③;④.A.1個 B.2個 C.3個 D.4個3.如圖,點,,都在上,,則等于()A. B. C. D.4.如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<12),連接DE,當(dāng)△BDE是直角三角形時,t的值為()A.4或5 B.4或7 C.4或5或7 D.4或7或95.如圖,中,,,點是的外心.則()A. B. C. D.6.如圖,是的直徑,,是的兩條弦,,連接,若,則的度數(shù)是()A.10° B.20° C.30° D.40°7.方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.無實數(shù)根 D.只有一個實數(shù)根8.如圖,△ABC的頂點都在方格紙的格點上,那么的值為()A. B. C. D.9.,是的兩條切線,,為切點,直線交于,兩點,交于點,為的直徑,下列結(jié)論中不正確的是()A. B. C. D.10.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“?!薄ⅰ暗摗?、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④11.一種商品原價元,經(jīng)過兩次降價后每盒26元,設(shè)兩次降價的百分率都為,則滿足等式()A. B. C. D.12.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.二、填空題(每題4分,共24分)13.如圖,直線與拋物線交于,兩點,點是軸上的一個動點,當(dāng)?shù)闹荛L最小時,_.14.在一個不透明的袋子中裝有6個白球和若干個紅球,這些球除顏色外無其他差別.每次從袋子中隨機摸出一個球,記下顏色后再放回袋中,通過多次重復(fù)試驗發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.7附近,則袋子中紅球約有_____個.15.如圖,坐標(biāo)系中正方形網(wǎng)格的單位長度為1,拋物線y1=-x2+3向下平移2個單位后得拋物線y2,則陰影部分的面積S=_____________.16.若,則的值為_____.17.如圖,點C是以AB為直徑的半圓上一個動點(不與點A、B重合),且AC+BC=8,若AB=m(m為整數(shù)),則整數(shù)m的值為______.18.如圖,把繞著點順時針方向旋轉(zhuǎn)角度(),得到,若,,三點在同一條直線上,,則的度數(shù)是___________.三、解答題(共78分)19.(8分)如圖,以為直徑作半圓,點是半圓弧的中點,點是上的一個動點(點不與點、重合),交于點,延長、交于點,過點作,垂足為.(1)求證:是的切線;(2)若的半徑為1,當(dāng)點運動到的三等分點時,求的長.20.(8分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結(jié)EF、EO,若DE=,∠DPA=45°.(1)求⊙O的半徑;(2)求圖中陰影部分的面積.21.(8分)(1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點P作PQ⊥AB,垂足為點Q.說明△APQ∽△ABP;(2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內(nèi),且PQ=4,過點Q作PQ的垂線交⊙O于點A、B.設(shè)PA=x,PB=y(tǒng),求y與x的函數(shù)表達(dá)式.22.(10分)如圖,已知四邊形ABCD是平行四邊形.(1)尺規(guī)作圖:按下列要求完成作圖;(保留作圖痕跡,請標(biāo)注字母)①連AC;②作AC的垂直平分線交BC、AD于E、F;③連接AE、CF;(2)判斷四邊形AECF的形狀,并說明理由.23.(10分)消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.(1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________.(2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.24.(10分)如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.(1)求∠DAF的度數(shù);(2)求證:AE2=EF?ED;(3)求證:AD是⊙O的切線.25.(12分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當(dāng)點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)26.綜合與探究問題情境:(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關(guān)系是,位置關(guān)系是.合作探究:(2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.(3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)一元二次方程的定義逐項進(jìn)行判斷即可.【詳解】A、是一元三次方程,故不符合題意;B、是分式方程,故不符合題意;C、是二元二次方程,故不符合題意;D、是一元二次方程,符合題意.故選:D.【點睛】本題考查一元二次方程的定義,熟練掌握定義是關(guān)鍵.2、C【分析】①③,根據(jù)已知把∠ABD,∠CBD,∠A角度確定相等關(guān)系,得到等腰三角形證明腰相等即可;②通過證△ABC∽△BCD,從而確定②是否正確,根據(jù)AD=BD=BC,即解得BC=AC,故④正確.【詳解】①BC是⊙A的內(nèi)接正十邊形的一邊,因為AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因為BD平分∠ABC交AC于點D,∴∠ABD=∠CBD=∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正確;又∵△ABD中,AD+BD>AB∴2AD>AB,故③錯誤.②根據(jù)兩角對應(yīng)相等的兩個三角形相似易證△ABC∽△BCD,∴,又AB=AC,故②正確,根據(jù)AD=BD=BC,即,解得BC=AC,故④正確,故選C.【點睛】本題主要考查圓的幾何綜合,解決本題的關(guān)鍵是要熟練掌握圓的基本性質(zhì)和幾何圖形的性質(zhì).3、C【分析】連接OC,根據(jù)等邊對等角即可得到∠B=∠BCO,∠A=∠ACO,從而求得∠ACB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】連接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO,∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故選:C.【點睛】本題考查了圓周角定理,正確作出輔助線,求得∠ACB的度數(shù)是關(guān)鍵.4、D【解析】由條件可求得AB=8,可知E點的運動路線為從A到B,再從B到AB的中點,當(dāng)△BDE為直角三角形時,只有∠EDB=90°或∠DEB=90°,再結(jié)合△BDE和△ABC相似,可求得BE的長,則可求得t的值.【詳解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D為BC中點,∴BD=2cm,∵0≤t<12,∴E點的運動路線為從A到B,再從B到AB的中點,按運動時間分為0≤t≤8和8<t<12兩種情況,①當(dāng)0≤t≤8時,AE=tcm,BE=BC-AE=(8-t)cm,當(dāng)∠EDB=90°時,則有AC∥ED,∵D為BC中點,∴E為AB中點,此時AE=4cm,可得t=4;當(dāng)∠DEB=90°時,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②當(dāng)8<t<12時,則此時E點又經(jīng)過t=7秒時的位置,此時t=8+1=9;綜上可知t的值為4或7或9,故選:D.【點睛】本題主要考查相似三角形的判定和性質(zhì),用t表示出線段的長,化動為靜,再根據(jù)相似三角形的對應(yīng)邊成比例找到關(guān)于t的方程是解決這類問題的基本思路.5、C【分析】根據(jù)三角形內(nèi)角和定理求出∠A=70°,根據(jù)圓周角定理解答即可.【詳解】解:∵∠ABC=50°,∠ACB=60°
∴∠A=70°
∵點O是△ABC的外心,
∴∠BOC=2∠A=140°,
故選:C【點睛】本題考查的是三角形內(nèi)角和定理、外心的定義和圓周角定理.6、D【分析】連接AD,由AB是⊙O的直徑及CD⊥AB可得出弧BC=弧BD,進(jìn)而可得出∠BAD=∠BAC,利用圓周角定理可得出∠BOD的度數(shù).【詳解】連接AD,如圖所示:
∵AB是⊙O的直徑,CD⊥AB,
∴弧BC=弧BD,
∴∠BAD=∠BAC=20°.
∴∠BOD=2∠BAD=40°,
故選:D.【點睛】此題考查了圓周角定理以及垂徑定理.此題難度不大,利用圓周角定理求出∠BOD的度數(shù)是解題的關(guān)鍵.7、C【分析】把a=1,b=-1,c=3代入△=b2-4ac進(jìn)行計算,然后根據(jù)計算結(jié)果判斷方程根的情況.【詳解】∵a=1,b=-1,c=3,∴△=b2-4ac=(-1)2-4×1×3=-11<0,所以方程沒有實數(shù)根.故選C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.8、D【分析】把∠A置于直角三角形中,進(jìn)而求得對邊與斜邊之比即可.【詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【點睛】本題考查了銳角三角函數(shù)的定義;合理構(gòu)造直角三角形是解題關(guān)鍵.9、B【解析】根據(jù)切線的性質(zhì)和切線長定理得到PA=PB,∠APE=∠BPE,,易證△PAE≌△PBE,得到E為AB中點,根據(jù)垂徑定理得;通過互余的角的運算可得.【詳解】解:∵,是的兩條切線,∴,∠APE=∠BPE,故A選項正確,在△PAE和△PBE中,,∴△PAE≌△PBE(SAS),∴AE=BE,即E為AB的中點,∴,即,故C選項正確,∴∵為切點,∴,則,∴∠PAE=∠AOP,又∵,∴∠PAE=∠ABP,∴,故D選項正確,故選B.【點睛】本題主要考查了切線長定理、全等三角形的判定和性質(zhì)、垂徑定理的推論及互余的角的運算,熟練掌握這些知識點的運用是解題的關(guān)鍵.10、D【分析】根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進(jìn)行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關(guān)鍵11、C【分析】等量關(guān)系為:原價×(1-下降率)2=26,把相關(guān)數(shù)值代入即可.【詳解】解:第一次降價后的價格為45(1-x),
第二次降價后的價格為45(1-x)·(1-x)=45(1-x)2,
∴列的方程為45(1-x)2=26,
故選:C.【點睛】本題考查求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.12、A【解析】設(shè),,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標(biāo)相同,設(shè),,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、.【分析】根據(jù)軸對稱,可以求得使得的周長最小時點的坐標(biāo),然后求出點到直線的距離和的長度,即可求得的面積,本題得以解決.【詳解】聯(lián)立得,解得,或,∴點的坐標(biāo)為,點的坐標(biāo)為,∴,作點關(guān)于軸的對稱點,連接與軸的交于,則此時的周長最小,點的坐標(biāo)為,點的坐標(biāo)為,設(shè)直線的函數(shù)解析式為,,得,∴直線的函數(shù)解析式為,當(dāng)時,,即點的坐標(biāo)為,將代入直線中,得,∵直線與軸的夾角是,∴點到直線的距離是:,∴的面積是:,故答案為.【點睛】本題考查二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)、軸對稱﹣最短路徑問題,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.14、1【分析】設(shè)袋子中的紅球有x個,利用紅球在總數(shù)中所占比例得出與試驗比例應(yīng)該相等求出即可.【詳解】解:設(shè)袋子中的紅球有x個,根據(jù)題意,得:=0.7,解得:x=1,經(jīng)檢驗:x=1是分式方程的解,∴袋子中紅球約有1個,故答案為:1.【點睛】此題主要考查概率公式的應(yīng)用,解題的關(guān)鍵是根據(jù)題意列式求解.15、1【解析】根據(jù)已知得出陰影部分即為平行四邊形的面積.【詳解】解:根據(jù)題意知,圖中陰影部分的面積即為平行四邊形的面積:2×2=1.
故答案是:1.【點睛】本題考查了二次函數(shù)圖象與幾何變換.解題關(guān)鍵是把陰影部分的面積整理為規(guī)則圖形的面積.16、.【解析】根據(jù)比例的合比性質(zhì)變形得:【詳解】∵,∴故答案為:.【點睛】本題主要考查了合比性質(zhì),對比例的性質(zhì)的記憶是解題的關(guān)鍵.17、6或1【分析】因為直徑所對圓周角為直角,所以ABC的邊長可應(yīng)用勾股定理求解,其中,且AC+BC=8,即可求得,列出關(guān)于BC的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)和三角形的三邊關(guān)系得出的范圍,再根據(jù)題意要求AB為整數(shù),即可得出AB可能的長度.【詳解】解:∵直徑所對圓周角為直角,故ABC為直角三角形,∴根據(jù)勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴當(dāng)BC=4時,的最小值=32,∴AB的最小值為∵∴∵AB=m∴∵m為整數(shù)∴m=6或1,故答案為:6或1.【點睛】本題主要考察了直徑所對圓周角為直角、勾股定理、三角形三邊關(guān)系、二次函數(shù)的性質(zhì),解題的關(guān)鍵在于找出AB長度的范圍.18、【分析】首先根據(jù)鄰補角定義求出∠BCC′=180°-∠BCB′=134°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠BCA=∠C′,AC=AC′,根據(jù)等邊對等角進(jìn)一步可得出∠BCA=∠ACC′=∠C′,再利用三角形內(nèi)角和求出∠CAC′的度數(shù),從而得出α的度數(shù)..【詳解】解:∵B,C,C′三點在同一條直線上,∴∠BCC′=180°-∠BCB′=134°,
又根據(jù)旋轉(zhuǎn)的性質(zhì)可得,∠CAC′=∠BAB′=α,∠BCA=∠C′,AC=AC′,∴∠ACC′=∠C′,∴∠BCA=∠ACC′=∠BCC′=67°=∠C′,
∴∠CAC′=180°-∠ACC′-∠C′=46°,
∴α=46°.
故答案為:46°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等;②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;③旋轉(zhuǎn)前、后的圖形全等.同時也考查了等腰三角形的性質(zhì),三角形的內(nèi)角和以及鄰補角的定義.三、解答題(共78分)19、(1)詳見解析;(2)或【分析】(1)連接,根據(jù)同弧所對的圓周角相等、直徑所對的圓周角等于90°和等弧所對的弦相等可得:,,,從而證出≌,然后根據(jù)等腰三角形的性質(zhì)即可求出∠ACF和∠ACO,從而求出∠OCF,即可證出結(jié)論;(2)先根據(jù)等腰直角三角形的性質(zhì)求出AC、BC,再根據(jù)一個弧有兩個三等分點分類討論:情況一:當(dāng)點為靠近點的三等分點時,根據(jù)三等分點即可求出,再根據(jù)銳角三角函數(shù)即可求出CE,從而求出AE;情況二:當(dāng)點為靠近點的三等分點時,根據(jù)三等分點即可求出,從而求出AP,再推導(dǎo)出∠PDE=30°,設(shè),用表示出DE、CE和AE的長,從而利用勾股定理列出方程即可求出,從而求出AE.【詳解】(1)證明:連接∵為的直徑∴∴根據(jù)同弧所對的圓周角相等可得,又∵是的中點∴∴在與中∴≌∴又∵∴平分∴∵,為的中點∴平分∴∴∴∴為的切線(2)證明:如圖2∵的半徑為1∴又∵,∴情況一:如圖2當(dāng)點為靠近點的三等分點時∵點是的三等分點∴∴在Rt△BCE中,∴情況二:如圖3當(dāng)點為靠近點的三等分點時∵點是的三等分點∴∴∴又∵∴又∵,∴∴∴∴設(shè),則∴∴又∵∴即解出:或(應(yīng)小于,故舍去)∴綜上所述:或【點睛】此題考查的是圓的基本性質(zhì)、圓周角定理、切線的判定、等腰三角形的性質(zhì)和解直角三角形,掌握同弧所對的圓周角相等、直徑所對的圓周角是90°、切線的判定定理和用勾股定理和銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.20、(1)2;(2)π-2.【分析】(1)因為AB⊥DE,求得CE的長,因為DE平分AO,求得CO的長,根據(jù)勾股定理求得⊙O的半徑(2)連結(jié)OF,根據(jù)S陰影=S扇形–S△EOF求得【詳解】解:(1)∵直徑AB⊥DE∴∵DE平分AO∴又∵∴在Rt△COE中,∴⊙O的半徑為2(2)連結(jié)OF在Rt△DCP中,∵∴∴∵∴S陰影=【點睛】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱松刃蔚拿娣e公式、圓周角定理和含30度的直角三角形三邊的關(guān)系.21、(1)見解析;(2)【分析】(1)根據(jù)圓周角定理可證∠APB=90°,再根據(jù)相似三角形的判定方法:兩角對應(yīng)相等,兩個三角形相似即可求證結(jié)論;(2)連接PO,并延長PO交⊙O于點C,連接AC,根據(jù)圓周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)如圖①所示:∵AB為⊙O的直徑∴∠APB=90°又∵PQ⊥AB∴∠AQP=90°∴∠AQP=∠APB又∵∠PAQ=∠BAP∴△APQ∽△ABP.(2)如圖②,連接PO,并延長PO交⊙O于點C,連接AC.∵PC為⊙O的直徑∴∠PAC=90°又∵PQ⊥AB∴∠PQB=90°∴∠PAC=∠PQB又∵∠C=∠B(同弧所對的圓周角相等)∴△PAC∽△PQB∴又∵⊙O的半徑為7,即PC=14,且PQ=4,PA=x,PB=y(tǒng)∴∴.【點睛】本題考查相似三角形的判定及其性質(zhì),圓周角定理及其推論,解題的關(guān)鍵是綜合運用所學(xué)知識.22、(1)作圖見解析;(2)四邊形AECF為菱形,理由見解析.【解析】(1)按要求連接AC,分別以A,C為圓心,以大于AC長為半徑畫弧,弧在AC兩側(cè)的交點分別為P,Q,作直線PQ,PQ分別與BC,AC,AD交于點E,O,F(xiàn),連接AE、CF即可;(2)根據(jù)所作的是線段的垂直平分線結(jié)合平行四邊形的性質(zhì),證明△OAF≌△OCE,繼而得到OE=OF,從而得AC與EF互相垂直平分,根據(jù)對角線互相垂直平分的四邊形是菱形即可得.【詳解】(1)如圖,AE、CF為所作;(2)四邊形AECF為菱形,理由如下:∵EF垂直平分AC,∴OA=OC,EF⊥AC,∵四邊形ABCD為平行四邊形,∴AF∥CE,∴∠OAF=∠OCE,∠OFA=∠OEC,∴△OAF≌△OCE,∴OE=OF,∴AC與EF互相平分,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴平行四邊形AECF為菱形.【點睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),段垂直平分線的性質(zhì),菱形的判定等,掌握尺規(guī)作圖的方法,作圖中的條件就是第二問中的已知條件,正確進(jìn)行尺規(guī)作圖是解題的關(guān)鍵.23、(1);(2)小月獲獎的機會更大些,理由見解析【分析】(1)根據(jù)概率公式直接求解即可;(2)首先根據(jù)題意分別畫出樹狀圖,然后由樹狀圖即可求得所有等可能的結(jié)果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率,比較即可求得答案.【詳解】解:(1)有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,則小楊獲獎的概率;(2)設(shè)兩張笑臉牌分別為笑,笑,兩張哭臉牌分別為哭,哭,畫樹狀圖如下:小月:∵共有種等可能的結(jié)果,翻開的兩張紙牌中出現(xiàn)笑臉的有種情況,∴小月獲獎的概率是:;小楊:∵共有種等可能的結(jié)果,翻開的兩張紙牌中出現(xiàn)笑臉的有種情況,∴小楊獲獎的概率是:;∵,∴,∴小月獲獎的機會更大些.【點睛】此題考查了列表法或樹狀圖法求概率,注意小楊屬于不放回實驗,小月屬于放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1)∠DAF=36°;(2)證明見解析;(3)證明見解析.【解析】(1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可;(3)連接AO,求出∠OAD=90°即可.【詳解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)證明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)證明:連接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA為半徑,∴AD是⊙O的切線.【點睛】本題考查了切線的判定,圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì)等知識點,能綜合運用定理進(jìn)行推理是解此題的關(guān)鍵.25、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年眉山貨運資格證模擬考試新題庫
- 電梯加件協(xié)議書(2篇)
- 電力需求預(yù)測合同(2篇)
- 2024-2025學(xué)年四年級語文上冊第五單元橋12橋之思備課教案北師大版
- 湘教版數(shù)學(xué)七年級下冊2.2.2《運用完全平方公式進(jìn)行計算》聽評課記錄
- 律師事務(wù)所年度檢查考核總結(jié)
- 第三季度財務(wù)工作總結(jié)
- 采購計劃年終工作總結(jié)
- 聽評課記錄二年級語文
- 領(lǐng)導(dǎo)給員工的評語與希望
- 口腔科院感知識培訓(xùn)針刺傷
- 土地管理學(xué)課件
- 《認(rèn)識人民幣》完整版
- 工程施工風(fēng)險研判報告及安全風(fēng)險管控防范應(yīng)對措施
- 會陰切開傷口裂開的護(hù)理查房
- ptmeg生產(chǎn)工藝技術(shù)
- 仁愛版八年級英語下冊全冊教案
- 醫(yī)療安全不良事件警示教育課件
- 《幼兒園健康》課件
- 醫(yī)保物價培訓(xùn)課件
- 食堂餐廳服務(wù)方案投標(biāo)方案(技術(shù)標(biāo))
評論
0/150
提交評論