版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ColorModel
1
Outline
□Introduction
□Spectraldistributions
□SimpleModelfortheVisualSystem
□SimpleModelforanEmitterSystem
□GeneratingPerceivableColors
□C1E-RGBColorMatchingFunctions
2
Outline
□CIE-RGBChromaticitySpace
□CIE-XYZChromaticitySpace
□ConvertingBetweenXYZandRGB
□ColorGamutsandUndjsnlayableColorsy
□Summaryrendering:WhatToDoIn業(yè)」''
Practice
3
PrimitivesofColor
Thedifferentvisual
lightspectrum
distribution
lllumina+ion
stimulatetheeyes
andcausethecolor?Reflec+ance
perception
SpectralDistributions
□Radiometry(radiantpower,radianceetc)
■Measurementoflightenergy
□Photometry(luminanceetc)
■Measurementincludingresponseofvisualsystem
□Kn(X)/Xspectra1radiantpowerdistribution
□GenerallyC(X)definesspectralcolordistribution
Xe[%%J=Ac
□Incomputergraspuhsiuca^l)lyradiance.
5
SpectrumCharacterofColor
700nm400nm
1041061081(TMO121O141016101
>frequency(Hz)
-I~I_I~I~I_Il~I~F-wavelength(nm)
10151013101110910710510310110-1104
11
>?1\'HA\1
AMradio/microwave\ultraviolet\gammarays
FMradio,TVinfraredx-rays
6
ColorandWaveLength
Mostlightweseeisnotjustasinglewavelength,
butacombinationofmanywavelengthslikebelow.
Thisprofileisoftenreferredtoasaspectrum,or
spectralpowerdistribution.
7
ColorAsSpectralDistributions
8
SpectrumEfficiencyCurve
Q
A
o
u
e
p
E
e
s
n
o
u
E
n
l
e
z
D
eI
d
9
HumanColorPerception
■TheHumanRetina
-Theeyeisbasicallyjustacamera
-Eachneuroniseitherarodoxacone.
-Rodsarenotsensitivetocolor,butthecones
are!
10
LightIntensityandBrightness
■Intensitydescriesthephysicalamountofenergy,
brightnessdescribesourperceptionofthisenergy;
■Ourperceptionoflightisfunctionofoureyes,
whichperformsnumerousunconscious
correctionsandmodifications.Forexample,the
equaldensitiesofcoloredlightareperceivedas
beingofdifferentbrightnessdependingonthe
color.
11
MonochromaticLight(PureColor)
□6(1)=0,九wOO
□f5(X)dX=1/
□Jb⑴f(x-t)dt=f(x)
□C(X)=5(X-Xo)isspectraldistributionforpure
colorwithwavelengthXo
12
VisibleSpectrum
13
收工INVISIBLE
SUN
SchematicRepresentation
ofColorSpectra
EARTH
ColorSpace
□Spaceofallvisiblecolor^^quivalenttosetof
allfunctionsC:A—R
■C(X)>OallXI-J
■C(X)>0someX(atleast
□(Cardinalityofthisspaceis2C)
15
Perceptionand
TheSixthSense5Movie
□Wedonot'see9C(X)directlybutasfiltered
throughvisualsystem.
□Twodifferentpeople/animalswil「see'<(R)
differently.
□DifferentC(九)scanappearexactlythesametoone
individual(metamer).
□(Ignoringall'higherlevefprocessing,which
basicallyindicates66weseewhatweexpecttosee").
16
InfinitetoFinite
□Colorspaceisinfinitedimensional
□Visualsystemfilterstheenergydistribution
throughafinitesetofchannels
□Constructsafinitesignalspace(retinallevel)
□Throughopticnervetohigherorderprocessing
(visualcortex).
17
ASimpleModelforVisualSystem
OPTIC
NERVE
HumanEyeSchematic18
PhotosensitiveReceptors
□Rods-130,000,000nightvision+
peripheral(scotopic)
□Cones-5-7,000,000,daylightvision+
acuity(onepointonly)(Photopic)
□Cones
19
LMSResponseCurves
□I=fc(X)L(X)dX
□m=fc(X)M(X)dX
□s=fC(X)S(X)dX
口C—(trichromati£jheory)
□LMS(C)=(l,m5)
□LMS(Ca)=LMS(Cb)thenCa,Cbare
metamers.
20
2-degreeconenormalised
responsecurves
D(
OU
cs—10
n10
o.20
)J',0
^0
Ao,8
usw.460
o20
'so
p0
匕
。o
d。.03
s456oo78
0000000000
wavelength(nm)
21
SimpleModelforanEmitter
System
□Generateschromaticlightbymixingstreams
ofenergyoflightofdifferentspectral
distributions
□Finitenumber(>=3)andindependent
22
Primaries(Basis)foranEmitter
□CE(九)=%E[仇)+a2E2(X)+(X3E3(九)
□Ejaretheprimaries(formabasis)
□以arecalled\h^^tensitiep
□CIE-RGBPrimariesare:
■ER仇)=5(X-,R),九R=700nm
■EG(X)=3(九-九G),九G=546.Inm
■EB(X)=8(X-九B),九B=435.8nm
23
ComputingTheIntensities
□ForagivenC(X)problemistofindthe
intensities必suchthatCE(X)ismetamericto
CQ).
□FirstMethodtobeshownisn'tused,but
illustrativeoftheproblem.
24
ColorMatchingFunctions
□PreviousmethodreliedonknowingL,M,
andSresponsecurvesaccurately.
□Bettermethodbasedoncolormatching
functions.
□Definehowtogetthecolormatching
functions%Q)relativetoagivensystemof
primaries.
25
CIEColorMatchingExperiments
S
2
S
3
OdC
w
i
mi
OBSERVER
26
ColorMatchingExperiment
Mixingof3primaries
Targetcolor
overlap
Adjustintensitiestomatchthecolor
27
2-degreeRGBColorMatching
Functions
3o
.5
39o
2o
2.5o
A.0
1.5o
*so
u1.0
.5o
ol).0
u0.o
一0.
-0.50300350400450TOO550600650700750800
-1.00
wavelengthnm
28
ColorMetamer
Agivencolorthatweperceivedmatcheswith
unlimitedspectrumdistributions.Thisphenomenais
calledmetamer.Sothespectrumcannotbeusedas
coiorTneMcThestrategyistochoosethesimplist
spectrumtorepresentaspecificcolor.
29
___________RGBM2del
Acolorwecanperceivedcanbesynthesizedbyany
threepurecolorsthatmeetcertainrequirements.
Thesethreebasiccolorsarecalledprimitives.The
quiteoftenusedprimitivesareRed、Greenand
Blue。
30
⑴Colorspaceis3D,thethreestimulicanbe
dominantwavelength,saturation,and
intensity,orred,greenandblue;
(2)Anycolorcanberepresentedbytristimulus,
iftheyareredgreenandblue,then
C(C)=R(R)+G(G)+B(B)
31
H.GrassmannLaw
(3)Propertiesofcolormixingj
C3.1)iftwocolor
q(C)=R|(R)+O(G)+B[(B)
C2(C)=R2(R)+G2(G)+B2(B)aremixed,thentheresult
is:
C3(C)=(R1+R2)(R)+(G1+G2)(G)+(B1+B2)(B)
32
H.GrassmannLaw
C3.2)ifthetristimulusofcolorC(C)=
R(R)+G(G)+B(B)arescaledthesamektimes,then
thecolorwillalsobescaledktimes,thatis:
kC(C)=kR(R)+kG(G)+kB(B)
(3.3)ifC](Q=CCCJ,C2(C)=CfCJthen
C《)=C2(C)
(4Jthecolorspaceiscontinuous.33
C1E-RGBChromaticitySpace
□ConsiderCIE-RGBprimaries:
■ForeachC(X)thereisapoint(aR,aG,aB):
口
CQ)pOCRERQ)+aGEG(X)+aBEB(X)
■Consideringallsuchpossiblepoints
口(aR,aG,aB)
■Resultsin3DRGBcolorspace
■Hardtovisualisein3D
■soweMlfinda2Drepresentationinstead.
34
C1E-RGBChromaticitySpace
□Consider1stonlymonochromaticcolors:
■C(X)=3仇-九c)
□LettheCIE-RGBmatchingfunctionsbe
■rQ),gQ),b(九)廠
□Then,eg,(
■aR(X0)=f5(X-九0)r(X)dX=r(X0)'
□Generally
■(aR%),aG(Z0),aB(X0))=(r(X0),g&),b(X0))
35
C1E-RGBChromaticitySpace
□As九0variesoverallwavelengths
■(r(X0),g(X0),b(X0))sweepsouta3Dcurve.
□Thiscurvegivesthemetamerintensitiesfor
allmonochromaticcolors.
□Tovisualisethiscurve,conventionally
projectontotheplane
aR+aG+aB=1
36
C1E-RGBChromaticitySpace
□Itiseasytoshowthatprojectionof
(OIR,OCG,otB)onto+ocG+otB=1is:
■(0CR/D,01c/D,aB/D),
□D=aR+aG+aB
□Showthatinteriorandboundaryofthe
curvecorrespondtovisiblecolors.
□C1E-RGBchromaticityspace.
37
C1E-RGBChromaticityDiagram
38
C1E-RGBChromaticity
□Define:
■VQ)=bj(.+b2M(X)+b3S(X)
□Specificconstantsbjresultsin
■Spectralluminousefficiencycurve
□OverallresponseofvisualsystemtoC(X)
■L(C)=KfC(X)V(X)dX
□ForK=680lumens/watt,andCasradiance,
calledthemin(candelaspersquaremetre)
39
SpectralLuminousEfficiency
Function
40
8-8壬+D-y+fdH(D)q■
6□
YP(Y>(Y)司8:
ypsAsfujy+
YP(Y)>(sfuFdn§□
UOIIJL□
母
gd8H+SD山£+(Y)/"au■
□
。
—
2P二pluojlo8D&JU
LuminanceandChrominance
口L(C)=aRlR+aGlG+aBlB
■andlRlG1Bareconstants
□Considersetofall(aR,aG,aB)satisfyingthis
equation...
■aplaneofconstantluminanceinRGBspace
□OnlyonepointonplanecorrespondstocolorC
■sowhatisvarying?
□Chrominance
■Thepartofacolor(hue)abstractingawaythe
luminance
□color=chrominance+luminance(independent)
42
LuminanceandChrominance
□Considerplaneofconstantluminance
■OR+aG+apk=L
□Leta*=(a,,a%,a,))beapointonthisplane.
■(ta,,toe,,ta'%),t>0isalinefrom0througha"
□Luminanceisincreasing(tL)butprojectionon
aR+aG+otB=1isthesame.
□ProjectiononaR+aG+aB=1isawayof
providing2Dcoordsystemforchrominance.
43
ChangeofBasis
□EandFaretwodifferentprimaries
■C(X)?oc1E](入)+a2E2(X)+a3E3(X)
■^(1)+32F2(x)+P3F3(X)
□LetAbethematrixthatexpressesFintermsofE
■FQ)=AEQ)
□Then
■oc=pA
■YEj(X)=XiyFi(X)(CMFs)
44
CalculateTheTristimulus
Thinkoverthequestionofhowtocalculatethe
tristimulusofanexperimentallight.Wecansee
fromthematchingexperimentthat,whenRGBis
usedtomatchagivenwavelengthpurelight,the
tristimulusaredetermined.Foranyexperiment
lightwitharbitraryspectrumdistribution,wecan
giveafactortoeverywavelengh,andthensum
thethreestimuli.
45
Calculatethetristimulus
R=f:P(2)r-(2)J2=Z770P(2)r―(2)
G=C:7V)g-----⑷曲大尸770(㈤-g----(㈤
-770―
B=J8:P(2)Z?(2)J2=ZP(2)/;(2)
46
ExampleofColorCalculation
43.10
-
n
t
e
n
s
t一
y
1
0.8263
0.6027
380460540620700
435.8546.1700
wavelength47
ExampleofColorCalculation
R=尸(435.8)/(435.8)+尸(546.1)?r(546.1)+P(700)-r(700)
G=P(435.8)?g(435.8)+P(546.1)?g(546.1)+P(700)-g(700)
B=P(435.8)?b(435.8)+P(546.1)?仇546.1)+P(700)?3(700)
即
7?=43.10x0.0232=1
G=0.8263xL2102=l
5=0.6027x1.6592=1
CalculateIntensity
y=P(435.8)-V(435.8)
+尸(546.1)?V(546.1)
A
O
M
+P(700)-7(700)O
I
O
E
O
s
=0.6027x0.01779n
o
c
E-
+0.8263x0.9834z
、4
/
4M
-o
+43.10x0.0041aQ
=12
00i?--------1--------11r-...........I
1300400500600700800
Wavelengtti(nm)
HSVModel
Whenweusethewavelength,theproportion
ofwhitelightinthegivenlight,theintensityto
describeacolor,acolorsystemofHSVCHug,
50
CIEColorSpace
Inordertoachievearepresentationwhichusesonlypositivemixingcoefficients,
theCIE("CommissionInternationaled'Eclairage")definedthreenewhypothetical
lightsources,x,y,andz,whichyieldpositivematchingcurves:
?Definedin1931todescribethefullspaceofperceptiblecolors
?Revisionsnowusedbycolorprofessionals
?Cannotproducetheprimaries-neednegativelight!
C1E-XYZChromaticitySpace
□CIE-RGBrepresentationnotideal
■colorsoutside1stquadrantnotachievable
■NegativeCMFfunctionranges
□CIEderivedadifferentXYZbasiswithbetter
mathamaticalbehaviour
■X(九),Y(九),Z(X)basisfunctions(imaginaryprimaries)
■X,Zhavezeroluminance
■CMFforYisspectralluminousefficiencyfunctionV
□KnownmatrixAfortransformationtoCIE-RGB
52
C1E-RGBChromaticityDiagram
53
CIE-XYZSystem
■CIE-RGBhasnegtivecoordinates;
■ChooseaXYZtriangletosurroundallthe
spectrumcurves;
■Makethesidesclosewithspectrumcurves;
■ChooseprimitiveYtorepresentintentsity;
54
CIEChromaticityDiagram
■Normalized
AmountsofXand
YforColorsin
VisibleSpectrum
55
C1E-XYZSpace
■Irregular3Dvolumeshapeis
difficulttounderstand
■Chromaticitydiagram(the
samecolorofthevarying
intensity,Y,shouldallendup
atthesamepoint)
x—____x____
X+Y+Z
Y
y~
X+Y+Z
56
CIEXYZChromaticityCoordinates
x
X+Y+Z
y
x+y+z
z
x+Y+z
57
UseCIEChromaticityDiagram
ToDetermineaColor
Tonguelikecontourlinerepresentsallthevisible
lights'wavelengthtrails,thefigurebesidethe
contouristhewavelengthofthevisiblelight.The
linesegmentthatconnectsthetwoendsofthetrailis
calledpurpleline,representsthemixedcolorthat
synthesizedbythepurelightsatthetwoends.The
areainsidethetonguerepresentsallthecolorsthat
canbeproducedbythereallight.Thenormalized
whitelightlocateat(0.333,0.333J.
58
CalculateUsingCIE
Chromaticitypiagram
UseCIEchromaticityDiagramcalculatethe
dominantwavelength;
■Calculatesaturation;
Determinethecolor-givetheintensityY;
59
ExampleofCalculation
Let。](玉,y,乂),02(%2,為,毛)themixedcolor
C12(%12,必2,乂2)isG2=(X1+X2)+(Y+H)+(Z]+Z2)
thenbasedonthex,y,zequeation.wederive
thecoordinatesofC12:
玉7]+xj?yZ+2
X\2,>12
T^T2
60
CIEChromaticityDiagram
Define三院司用忠閣辱率=&stenni隹
?OIOF◎。國BlernentarvDomff喀郡的觸普揖廂出
GamutsandPs拄犀
61
CalculateXYZtristimulus
7-----770-----
xIf80°P(2)x(2)t/2=EP(2)x(2)
■:0PU)yU)-----〃=#Q7)70y(9------
z=籃尸⑷-z---(2)"=Z770P(2)z----(-2)
62
CalculateMatchingFunction
■Howtocalculatecolormatching
functionx(X),y(X),z(九)?
63
寸
I9
U2o
O?l!—
W;+-p>
s
U二
o
S
RU』
Oq
YJ
Uo
3-j
So
J
1U
oU
S
PJO(((
dI
一NNN
gQ①)))
4.z
II>2Z
e
PU+++
x」q
(((
2J7(
NNN
①e①))))
m
。p(
S(((
u
P」①S+++
(
s(二;(
3NN——(
NON
))))
二U
,XKH
>SHK
oOI
PeH'PH"
j(J』((
D、
NON7
)))
uJoO2/
i£s。(
CalculateMatchingFunction
FromEquation:y(2)=V(2),weobtain:
7(2)=受4)V(A)
y(4)
7(^)=v(2)
Z(A)=Z(A)V(2)
y(2)
65
2-degXYZColorMatching
Functions
2
1.5
1
0.5
o
300
-0.5
wavelengthnm
66
C1E-XYZChromaticitySpace
□CQ)2X.X(X)+Y.Y(九)+乙Z(九)
■X=fC(X)x(X)dX
■Y=fC(X)y(X)dX[luminance]
■Z=fC(X)z(X)dX
■x,y,zaretheCMFs
67
YSystem:EBU(PAL/SECAM)
Primaryilluminants(X,Y)
0.9Red:0,6400,0,3300
Green:0,2900,0,6000
Blue:0.1500,0.0600
0.8一point(X,Y):0327,0.3221
51fl
0.7
CIE-XYZ505
Chromaticity0.6
Diagram
0.5
0.3
0.2
0.1
ConvertingBetweenXYZandRGB
□SystemhasprimariesRQ),G(X),BQ)
□Howtoconvertbetweenacolorexpressedin
RGBandviceversa?
□Derivation...
69
ColorGamutsand
Undisplayablecolors
□DisplayhasRGBprimaries,withcorresponding
XYZcolorsCR,CG,CB
□ChromaticitiescR,cG,cBwillformtriangleon
CIE-XYZdiagram
□Allpointsinthetrianglearedisplayablecolors
■formingthecolorgamut
70
SomeColorGamuts
00.40.8
ClEx
UndisplayableColors
□SupposeXYZcolorcomputed,butnot
displayable?
□Terminology
■Dominantwavelength
■Saturation
72
ColorMightNotBeDisplayable
□Fallsoutsideofthetriangle(itschromaticity
notdisplayableonthisdevice)
■Mightdesaturateit,moveitalonglineQWuntil
insidegamut(sodominantwavelengthinvariant)
□colorwithluminanceoutsideofdisplayable
range.
■ClipvectorthroughtheorigintotheRGBcube
(chrominanceinvariant)
73
XYZW什hWh什ePoint
ForcoloratP
?Qdominantwave
?WP/WQsaturation
RGBcolorCube
white
sreen
75
RGBCubeMappedtoXYZSpace
RGBfXYZConversion
■Nowdeterminethelineartransformationwhich
mapsRGBtristimulusvaluestoXYZvalues.
■Thismatrixisdifferentforeachmonitor(i.e.
differentmonitorphosphors).
■Monitorshaveafiniteluminancerange(typically100
cd/m2),whereasXYZspaceisunbounded
■Needtobeconcernedwiththedisplayofbright
sources(e.g.thesun)
■tonemapping:reproducingtheimpressionofbrightness
onadeviceoflimitedluminancebandwidth.
77
RGBfXYZConversion
RecalllinearrelationshipbetweenXYZandRGB
spaces:
x“11ai3R
Ya22G
zB
■Linearsystemcanbesolvedifpositionsof3colors
areknowninbothspaces.
■Sometimesmanufacturersprovidetristimulus
valuesformonitorphosphors=(Xr,Yr,Zr)(X,Y,
Zg)癡Yb,Zb)78
RGBfXYZConversion
■Solutionofthelinearsystem:
Note:「尺[「i[「X[
G=0nY=匕
B0ZZr
■...andsimilarlyforG=1andB=1.79
XYZfRGBConversion
■Theoppositetransformationisgivenbythe
inverseoftheoriginalRGBtoXYZmatrix:
°XYZ=MRGBTXYZCRGB
CRGB~MRGBfXYZ^XYZ
■WecanthusdetermineanRGBvalue
associatedwiththeXYZvaluedetermined
earlierfromF(l)
80
XYZfRGBConversion
■UsuallyXYZtristimulusvaluesforeachphosphor
notprovided.
■Manufacturersprovidethechromaticityco-
ordinatesofthephosphorsandthewhitepoint
(colorwhenR=G=B=1):
(%,%)(乙,幾)(/,%)(/,凡)
■...finallyweneedtoknowtheluminanceofthe
whitepointgivenasYw
V
Let紇=+匕+nxr=--
Er
^Xr=xrErYr=yrErZr=(l-xr-yr)Er
XYZfRGBConversion
■Similarconditionsholdfor(Xg,Yg,Zg)and
陽,丫〃ZJ
■ThereforetheonlyunknownsareE,Eand
一rog
E
X\rXgEgxhEhR
y=yrErybEhG
Z」[_(l-xr-yr)Er(1—與―兒)紇(1—%一券閩
X.1
■...butwealsorequirethat:匕M1
z”,1
82
XYZfRGBConversion
■Firstweneedtodetermine(Xw,Yw,Zw)
given鼠,yw,Yw):
匕Y
=Xw+%+Zw=-
x卬+%+z卬幾
X
4=>Xw="(Xw+%+zJ
Xw+匕+Zw
YY
and
?..alsoZw=(l-xw-yw)^
ywyw
83
XYZfRGBConversion
■TodeterminevaluesforEr,EgandEbweobservethat
Xg
X「xX",
ifR+G+B=Wthen+y.+
yr4匕
0ZgZgZ”,
???Xw=Xr+Xg+Xb=xrEr+XgEg+xbEb
...andsimilarlyforYwandZwleadingtoanewlinear
systeminnounknownsthereforewecansolveforEr,
「Xx
EgandEb:xw%b
Eg
匕%yb
xxEb
Zw0-r0~g~yg)(1一4一%)
84
SharingColorsBetweenMon什ors
■Ifwewishtoguaranteethatacoloronmonitor1
looksthesameasonmonitor
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國政法大學(xué)《工程中的數(shù)值方法C》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州西亞斯學(xué)院《現(xiàn)代通信原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 長江工程職業(yè)技術(shù)學(xué)院《公共服務(wù)質(zhì)量管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 消費級3D打印機(jī)打印精度改進(jìn)
- 保險行業(yè)基礎(chǔ)講解模板
- 業(yè)務(wù)操作-房地產(chǎn)經(jīng)紀(jì)人《業(yè)務(wù)操作》名師預(yù)測卷4
- 開學(xué)晨會發(fā)言稿
- 二零二五年政府形象廣告服務(wù)合同規(guī)范
- 二零二五版國際學(xué)校外教引進(jìn)與團(tuán)隊建設(shè)協(xié)議3篇
- 2024-2025學(xué)年新疆烏魯木齊四十一中高二(上)期末數(shù)學(xué)試卷(含答案)
- 《道路交通安全法》課件完整版
- 向女朋友認(rèn)錯保證書范文
- 五分?jǐn)?shù)加法和減法(課件)-數(shù)學(xué)五年級下冊
- 2024年四川省綿陽市中考語文試卷(附真題答案)
- 設(shè)計材料與工藝課程 課件 第1章 產(chǎn)品設(shè)計材料與工藝概述
- 幼兒園反恐防暴技能培訓(xùn)內(nèi)容
- 食品企業(yè)質(zhì)檢員聘用合同
- 中醫(yī)診所內(nèi)外部審計制度
- 自然辯證法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年國家危險化學(xué)品經(jīng)營單位安全生產(chǎn)考試題庫(含答案)
- 護(hù)理員技能培訓(xùn)課件
評論
0/150
提交評論