航空專英1教案第3章 Forces in Flight_第1頁
航空專英1教案第3章 Forces in Flight_第2頁
航空專英1教案第3章 Forces in Flight_第3頁
航空專英1教案第3章 Forces in Flight_第4頁
航空專英1教案第3章 Forces in Flight_第5頁
已閱讀5頁,還剩71頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

Ch3.ForcesinFlight

3.1Theforcesactingonanaeroplane

Figure2.1-2Dragsovercomearccatcrcsa

Lift(L)」、

Thrust(T)'—?Drag(D)

Weight(W)…

Figure2.1-3

Thefourmamforcesinbalance

weight重力,lift升力,drag阻力,thrust推力

3.2Weight重力

Gravityisthedownwardforceattractingallbodiesvertically

towardsthecentreoftheearth.Thegravitationalforceisweight.

Thetotalweightoftheloadedaeroplanemaybeconsideredasa

singleforceactingthroughthecentreofgravity.

thecentreofgravity重心(CG)

wingloading(翼載)

=theweightsupportedperunitareaofwing

=weightofaircraft/wingarea

Atypicaltrainingaeroplane:W=1220kg,S=20m2

wingloading=W/S=1220/20=61kg/m2

B-747wingloading=500kg/m2

ThepositionoftheCGis

shownindiagramswith

Weight▼acentroidsymbol:0

Figure2.1-4Weigh:acxscow

Throughthecentreofgravity(CG)

3.3Lift升力

Theproductionoftheliftforcebyanaerofoilisexplainedby

Bernoulli'sprinciple.

3.3.1Boundarylayer(邊界層,附面層)

laminar層流

turbulent湍流

attachedflow附著流

separationflow分離流,separationpoint分離點(sp)

transition轉(zhuǎn)振transitionpoint轉(zhuǎn)振點

transitionregion轉(zhuǎn)抿區(qū)

Allfluidshaveacertainstickinessandthereforearesistanceto

flow.Thisiscalledviscosity.Gasesarenothighlyviscousbutthere

isstilladegreeofstickiness.Inthecaseofawing,themoleculesof

airimmediatelyadjacenttothesurfacebecomeattachedtothe

surfaceandhavearelativevelocityofzero.Moleculesslightly

furtherawayfromthewingaredraggedalongbythe'attached5

moleculesbeneath.Thefurtherfromthewing,thelesstheairis

draggedalong,andhencethegreateristherelativevelocity.Alayer

isformed.Thelayersofairthatextendfromthesurfaceouttothe

freestreammakeuptheboundarylayer.

Thechangefromlaminartoturbulentflowtakesplaceatthe

transitionpoint,inthetransitionregion

aFreestream

aairflow

A,

-------------?Boundarylayer(afewmmthick)

----------?--------?affectedbyskinfrictiondrag-

----a--------------reducedrelativevelocity

AerofoiI-----------_____

00B6.EPS.Z--.—.....L..........

Figure2.1-7Boundarylayer

Transition

region

streamlineflow

——--------------..------------------------------------------

,一,?------------------------------------————-----------

---------------?■------------------------------

006二ept

Figure2.1-8Sweamiineflow

Figure2.1-9S:reamhneflowisaesirao.eMOLTCarw

turbulentflow

Thin,laminar-TransitionTransmonSeparation

flowboundarypointpointpoint

layer

Slightlythicker,

luroulent

boundarylayer

Figure2.1-10Streamlineflowis

3.3.2Pressuredistribution(壓強(qiáng)分布,壓力分布)

Figure2.1-28

Distributionofstaticpressure

aroundacamberedaerofoil

a:apositiveangleofattack.

Pressuredistributionaroundacambered

aerofoilatvaryinganglesofattack

o

2

o

^6

s

8-1

m.6

s

s

a

i-1.

d-1.,4

312

>

Q

6L9

e

N

48

-0.6

.2

C5J

B

m

s

s

e

Q

8OG

A

s0.8

o

j

1.0

UE50%T/E

ChordQIRTR

1-12Pressuredistribution

pressuredistributionchangeswithangleofattack.

a=4。,-4°,12°,20°

noliftforcebeyondthestallingangle

CL-CLMAXCt=acrit(臨界迎角)

+4°

Figure2.1-30

Staticpressuredistribution

atvariousanglesofattack.

O

CCJ

a

m

s

s

e

i

d

q

ITE

1“7Plotofpressurecoefficients(Cp)

atagivenangleofattack

3.3.3Liftfromatypicalwing

Thetotaleffectofthispressurepatternistoprovideanetupwards

force(lift)atpositiveangleofattacktogetherwithanetrearwards

force(drag).Thisactingpointisthecenterofpressure(cp).

Liftisacomponentofthetotalaerodynamicforceactingthrough

thecp,liftactsperpendiculartotheflightpath.

口,£reaction

/?

_也色line/—|:7.

Angleofr~(^-J^^Drag

aitacKI+.

RelativeaMow

Figure2.1-24Revivea-

Litt

LittL_________________盤

sag先W-

----_?,一■"-------------二--

------------------,aMorecamcer-morehh.

,"-------------------------------------Figure2.118

1

--------w

9137^.eC.jacurve

Figure2”/

liftfromatypicalwing

L/(l/2p/s)

r(q=l/2pv)

Lift二L二qsCL4

Figure2.1-33

Coefficientofliftversusangleofattack.

EachangleofattackproducesaparticularC,value.

Liftdependson:

wingshape(aerofoilsection);

angleofattack(AOA);

airdensity;(p)

freestreamvelocity(trueairspeed)(V2);

wingsurfacearea(S)

coefficientoflift,(CL),“l(fā)iftingability^^ofwing

Forsteadystraightandlevelflight,lift=weight

liftequationlift=weight=L=W=l/2pv2sCb

1,Airfoil

1)Airfoilterminology翼型術(shù)語

a,chordline弦線,(MAC:meanaerodynamicchord)

b,leadingedge前緣

c,trailingedge后緣

d,chord弦長

e,meancamberline平均彎度線

f,maximumcamber最大彎度

g,locationofmaximumcamber最大彎度位置

h,maximumthickness最大厚度

i,locationofmaximumthickness最大厚度位置

j,leadingedgeradius前緣半徑

2)Airfoilshapes翼型形狀

a,typicalwellcamberedaerofoil(high-lift,low-speedwing);

b,typicalhighspeedaerofoil;

c,typicallaminar-flowaerofoil;

d,symmetricalaerofoilo

Awell-camberedaerofoilAsymmetricalaerofoil

typicalhigh-lift,low-speedwing;(typicalHorizontalstabiliser)

LeadingecgeTrailingedgeLeadingedgeTrailingecge

Atypicalhigh-speedaerofoilAtypicallaminar-flowaerofoil

Figure2.1-16Variousaerofc:!cross-sections.

Atypicallaminar-flowaerofoil

Amorecamberedaerofoil?

Figure2.1-36

Comparisonofaerofoilcross-sections

?thelaminar-flowwing

littercamber,fairlysharpleadingedgeradius一agreater

distancelaminarflow—>lessprofiledrag(atlowangleof

attack)—>highercruisespeed(高巡航速度),lowerfuel

consumption(低油耗),greaterrange(大航程),

but—*lesslift(athighangleofattack)

一airflowseparationismoresudden

TowervalueofCLMAX-higherstallingspeed

Alaminarflowwingismoresusceptible(敏感)toasurface

condition.

?supercriticalwingsection超臨界剖面(超臨界翼型)

Supercriticalwinesectionsallowincreasedmiisingspeedbin.lisopermirgreater

rangetoragiven.lirtrame.enginemixbyallowingreducedfueldowin:herinse.Fig-

ure2-1shows.1supercrincalwingsection.

2-19Typicalsupercriticalwingcross-section

supercriticalwingsection:flattenthetopsurface

reflexcamber(反彎度)

toincreaseMCR(criticalMachnumber)一

delaytheformationofshockwave(duetotheflattentopsurface)

reflexcamberattherearundersurface—>increasedcruisingspeed

一thegreaterrange

2,Factorsaffectingthecoefficientoflift

1)Boundarylayer邊界層,附面層

Aturbulentboundarylayerproducesmoredragandlessliftbut

actuallyremainsattachedtothewingathigherangleofattack,

separationisdelayed.

2)Angleofattack(AOA)迎角,攻角

1.24Effectolangleofattackonseparation

Atlowerangleofattack,thereisalinearincreaseinCLfora

givenincreaseinangle,butjustbeforethestallingangleis

reached,therateofincreaseofCLreduces.Atthestall,thereisrapid

reductionofCLbutnotethatthewingisstillproducingsomelift.

3)Aerofoilshapeandwingplanform翼型形狀及機(jī)翼平面形狀

a,leading-edgeradius前緣半徑

Leading-edgeradiusaffectstheCLatornearthepointofthestall

withthesmallradiusproducingamoresuddenandmoresevere

effectontheCLcurveandthelargeradiusgivingahighervalueof

CLandamoreprogressivestallandgentlerflatteningoftheCL

curve.

b,camber彎度

asymmetricalaerofoil:a=0°CL=0

acamberedaerofoil:a=0°CL#0

Forthesameangleofattackthesymmetricalsectionhasalower

valueofCL,butthecamberedsectiongivesahighervalueofCLand

alsoproducesahighermaximumvalueofCLatthestallandalower

criticalangleofattack.

Increasingcamber

Symmetrical

/section

A

Angleofatuck

V26EffectofcamberonCL/(icurve

c,aspectratio展弦比

Theliftofalowaspectratiowingwillincreaseata

lowerratewithincreasingangleofattackthanthelift

onahighaspectratiowing.

d,sweepback后掠角

e,surfacecondition表面狀態(tài),表面條件

Roughnessofthewingsurfacewilleffecttheconditionofthe

boundarylayerandthusabilityofthewingtogeneratelift.

4)ReynoldsNumber雷諾數(shù)Re,R,

R=pvL/]ip=density密度

V=TAS真空速

L=chordlength弦長

「viscosity粘性系數(shù)

ReynoldsNumber(RI

Rswherep=density

V=TAS

L=chordlength

|i=viscosity

IfVisincreased,ReynoldsNumberwillincreaseandsotheair

flowhasmoreenergy,givingahighervalueofCtmax-Thisisbecause

athigherspeeds,forsameangleofattack,theboundarylayerwill

receivemorekineticenergywhichwillresultindelayedseparation

andconsequentlyahighermaximumvalueofCL.

AreductionofindensityathighaltitudewillreduceReandhence

reduceCtmax.Againthereasonislinkedwiththeenergyofthe

boundarylayer.Alowerdensitygiveslowermassandhencelower

kineticenergysincekineticenergyisafunctionofmassaswellas

speed.(KE=l/2mv2)

5)Machnumber馬赫數(shù)M=v/av:truespeed真空速

a:localspeedofsound音速

ThecoefficientofliftwillincreasewithincreasingMachnumber

atlowairspeed.

3,Thecentreofpressure(CP)壓力中心,壓心

:Angleofattackincreasesasairspeedreduces

togeneratethesamelift

Figure2.1-32Movemen!ofthecentreofpressure-camberedaerofoil.

af—>CLT(increasingtheliftingabilityofwing)一CPmoves

forward,

a=acritCPmovesback

1-18CPmovementwithincraasing?

donotconfusethepitchattitudeofaircraft(thelongitudinalaxis

relativetothehorizon)withtheangleofattack(thelongitudinalaxis

relativetotheairflow)andwiththeangleofincidence(the

longitudinalaxisrelativetothechordline).

Figure2.1-27

Theangleofincidenceisfixed

Longitudinalaxisduringdesignandconstruciion

ofaeroplaneOITBEPS

theangleofincidence安裝角longitudinalaxis縱軸

3.3.4Highliftdevices

highliftdevices高升力裝置,增升裝置

k'

Figure21-38

Cessnaelectricflapsystem.

1,Usinghigh-liftdevicespurpose

forexample:cruisespeedVeru-120knots,

stallingspeedVs=60knots,CLTfourtimesthe

coefficientoflift.

Usinghigh-liftdevices,togivetherequiredadditionalliftata

lowerspeed.

Lift=weight=CLxv2pV"xS

FinewingWell-camberedwino

Figure2.1-39SameaspeedCMana-faosrgne:,,:

InstraightandlevelflightL=W=l/2pv2sCt

40KIAS

Stallspeedwithfullflap

Figure2.1-40Flapslowerthestallingspeedandnoseauitude

H=const.—>p=const.,s]andchangingaerofoilshape一Cj,

Therequiredliftcanbegeneratedatmuchlowerspeeds.Thisis

thepurposeofthehigh-liftdevices.

2

L=W=l/2pvssCLmaxVS=^2W/(psCLmax)CimaxT-^Vs]

2,thetypesofhigh-liftdevices

Figure5.29Varioustypesofhigh-liftdevices.

1)leadingedgedevices前緣裝置

?slats縫翼:increasingtheliftcoefficientatveryhighangleof

attack.

Figure2.1-44Siorsaeiaythestall.

Slatscausesomeofthehighenergyairflowbeneaththewingto

flowthroughaslotandovertheuppersurfaceofthewing,thereby

delayingseparationandthestall,allowingtheaeroplanetoflyata

higherangleofattackandalowerairspeed.

Figure2.1-42Fu;l-spans(a*:1,

?leadingedgeflaps前緣襟翼:changingtheeffectivecurvature

oftheleadingedge,controllingtheflowathigherangleofattack.

?Krugerflaps克魯克襟翼:improvingleadingedgeflow

condition,delayingleadingedgeseparation.

Functionofleadingedgedevicesisfollowing:

①usingthegapflow(slat-fixedslotsandautomaticslats)

②droopingthefrontsectionofwing(leadingedgeflaps)

(3)usingKrugerflapswhichfoldout(折疊)fromunderthe

leadingedge

1-slat2-wingtip3-aileron4-flap

2)trailingedgedevices后緣裝置

?simpleflaps(plainfliips)簡單襟翼

?splitfliips開裂式襟翼

?slottedflaps開縫襟翼(asingleslotormultipleslots)

?Fowlerflap富勒式襟翼(后退開縫襟翼)

Figure2.1-41FullflapontheCessna172

Figure2.1-45

Efiec:ofleading-edgeandrailing-edgeflapsonCLmax

Thetrailingedgeflapsincreasethecamberoftheaerofoilsection,

orwingareaorusinggapflow.

Thegreaterthemeancamberline,thegreatertheliftcapability

(themaximumCLpossible)ofthewing.

3,effectsofflaps

1)increasedlift"aballoon"Tiftflaps”

Balloon

Traihng-edgeflaps

extendedhere

—一—一

Trailing-edgeflapsextendedalong

withachangeinthepitchattitude

Figure2.1-47Loweringflapcancauseaballoonunless:hepilotadiusisthepitchauitude

2)pitchingmoment

CPmovesaft—>longermomentarm一nose-downpitching

moment

L

A

Longermomentarmwfr??$

Figure2.1-48?.:?..-^jse:ne-icDHCH(downinthiscase).

3)decreasedlift/dragratio

Thedragincreaseisgreaterthantheliftincreases,soL/D1.

4)increaseddrag“dragflaps”

IAS70ktIAS55kt

WW

Clean

Figure2,1-49

Expendingflap-eithermorethrustorasleeper

descen:isrequirediooalancetnemcreasecdrag

5)lowerstallingangle

Figure2.1-50Flapextensionlowersthestallingangle

flapsdown一lowerstallingangle一flatterattitude

Figure2.1-51Sameaircraftpitchaunudesbutdifferemanglesofattack.

4,flapsfortake-off

Cleantake-off

(noflaps)、

Take-off

withflaps

extended

MfBIPS

Figure2.1-52Facsaiiowashonertake-offgrourarun

attake-offpositionbypartiallyloweringtheflaps

—>CLT,CDT(asmallpenalty)一lowerspeed-ashorter

take-offgroundrun

Whenretracttheflaps:

一CL1—>aircraftsinks(needtorisethenose,af)

一reductionofthecamberattherearofthewing

一movingthecentreofpressureforwards一thenose

topitch一retrimming

一CD1

5,flapsforapproachandlanding

atapproachandlandingbyloweringtheflaps-CJ,CDTT一a

lowerspeed

ballooning-CLT

pitchattitude-movingthecentreofpressure

?flapsincreasethepilotforwardview(視里子)

Withtrailingedgeflapsextended,theaeroplane'srequired

noseattitudeislower一Theimprovesforwardviewforthepilot.

Figure2.1-53Extendedflapsimorovethepile:sforwarc,viewandincreasedrag

3.4Drag阻力

Dragactsintheoppositedirectiontotheaircraft'smotionthrough

theair.Thethrustistoovercomedrag.

Thelowerthedrag,thelessthethrustrequired.

Thrustaboveandbeyondthatrequiredtoovercomedragisused

toclimb,accelerateandmanoeuvretheaircraft.Itiscalledexcess

thrust(富裕推力)

Figure2.1-54:?:::J-

Totaldragisthesumofallforcesactingparalleltoflight-pathof

theaircraft.

Figure2.1-55Tote:cracsthe:o:a'airresisrance:c-notion

Atsubsonicspeedsitisnormaltosubdividedragintotwomain

types

▲parasitedrag廢阻,寄生阻力Cdo

(alsoknownaszero-liftdrag零升阻力)

▲induceddrag誘導(dǎo)阻力,Cdi

(sometimesreferredtoaslift-dependentdrag升致阻力)

Cd=Cdo+Cdi

3.4.1Parasitedrag

Parasitedragincludessurfacefrictiondrag,formdragand

interferencedrag.

1,surfacefrictiondrag表面摩擦阻力,摩阻

1)Surface(orskin)frictiondragislargelydeterminedbythetotal

areaoftheaircraftthatisexposedtotheairflowingpastit.(wetted

area浸潤面積)

2)Thetypeofboundarylayerpresentalsohassignificanteffectwith

laminarflowcreatinglesssurfacefrictiondragthantheturbulent

flow.

3)Thethirdfactoraffectingsurfacefrictiondragisthecoefficientof

viscosityoftheair.Thegreatertheviscosity,thegreaterthedragging

effectoftheair.

Forminimumsurfacefrictiondrag,thetransitionfromlaminarto

turbulentmustbedelayedaslongaspossible.

2,formdrag型阻

pressuregradient壓強(qiáng)梯度

adversepressuregradient逆壓梯度,反壓梯度

reversepressuregradient逆壓梯度,反壓梯度

favorablepressuregradient順壓梯度

1-31Effectofadversepressuregradient

Whentheboundarylayerfinallyseparates,theseparatedflow

stillimpactsagainstsurfacecausingdrag.Thisisformdrag.

Effectsaremadetodelayseparationoftheboundarylayerinan

attempttoreduceformdrag.

Withgreaterkineticenergy,theboundarylayercanresistthe

effectsoftheadversepressuregradientforlonger,thedelaying

separationandreducedrag.

->Skinfcchondrac

0?6AEPS

Figure2.1-56Skinfricnondragandformdrag

SeparationpointSeparationpoint

Figure2.1-59

Icewillr.crease

drag(ancweicn*)

wake尾跡,protuberance突起物,fineness長細(xì)比

fairing整流罩,iceaccretion冰生成,

frontalarea迎風(fēng)面積(最大橫截面積)

Figure2.1-60Streamlining,especiallybenmdtheshaoe.reaucesformdragsubsiantially

3,interferencedrag干擾阻力

Thetotalparasitedragofanaeroplaneisgreaterthanthesumof

surfacefrictiondragandformdrag.Theadditionaldragiscausedby

mixing,orinterferenceoftheboundarylayerairflowatthejunction

ofvarioussurface,suchasatthewing/fuselagejunction,thetail

section/fuselagejunctionandthewing/enginenacellejunction.

Suitablefilleting(倒角),fairing,streamliningofshapes

minimizethisinterferencedrag.

4,summaryofparasitedrag

3Parasite-

Pdrag0cTAS2

9

M

CD

0』

d

?SlowIASFast

1-33EffectofIASonparasiticdrag

Parasitedragincreaseswithairspeed,atveryhighspeedsnearly

allthetotaldragiscausedbyit.

Thepredominanceofparasitedragathighspeedsshowstheneed

foraerodynamic“cleanness“toobtainmaximumperformance.

ParasitedragisdirectlyproportionaltothesquareofTAS,and

doublingthespeedwillquadrupletheamountofparasitedrag.

3.4.2Induceddrag

1,Howinduceddragiscaused?

vortex—>vortices,vortexes(復(fù)數(shù))旋渦

wingtipvortex翼尖渦

downwash下洗

induceddownwash誘導(dǎo)下洗

downwashangle下洗角

remoteflow遠(yuǎn)前方耒流

Induceddragisadirectresultoftheaircraftproducinglift.

Thedifferenceinpressurebetweentheupperandlowersurfaceof

thewingcausesairtospillaroundthetip,deflectingtheupper

surfaceflowtowardsthefuselageandthelowersurfaceflowtoward

thetips.

Asthetwoflowsmeetatthetrailingedgeaseriesofvorticesis

formed,whichaccumulateatthetiptoformalargewingtipvortex.

Whenthepressuredifferencebetweentheupperandlowersurface

isincreased(morelift),thenthesizeofthevortexwillincreasealso.

Induceddrag

a=angleofattack

toeffectiveflow

5=angleofinduced

downwash

Notes:1.'Lift'producedis90°

toeffectiveflow,but

thismustbeincreased

togive^desiredlift*at

90°toremoteflow.

2.AmountofInduceddrag

islargelydetermined

byangleofInduceddown-

wash.U1.i.e.sizeofvortex.

1?37Effectofdownwashangleonamountofinduceddrag

CCLwithA=aspectratio

D|-?An=pi(3.1416)

Productionoflift—*wingtipvorticesandtrailingedgevortices

fbrm一downwash一localrelativeairflowdirectionchanges一

liftisinclinedbackward一induceddrag(paralleltotheremote

relativeairflow)

2,Factorsaffectinginduceddrag

1)planform機(jī)翼平面形狀

elliptical那青園的

ellipticalplanform:Cdi=CL2/7rAA=aspectratio

Theellipticalplanformhasminimuminduceddrag.

1-38Spanwiseliftdistribution

2)aspectratio展弦比

A=b?/sb=spanlengthsowingarea

A=b/cc=meanchord

Atthesameareaofwing,anarrowwingofhighaspectratio(a

smallwingtips)hasweakerwingtipvortices,lessinduceddownwash

andlessinduceddrag.

Chord*

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論