




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Ch3.ForcesinFlight
3.1Theforcesactingonanaeroplane
Figure2.1-2Dragsovercomearccatcrcsa
Lift(L)」、
Thrust(T)'—?Drag(D)
Weight(W)…
Figure2.1-3
Thefourmamforcesinbalance
weight重力,lift升力,drag阻力,thrust推力
3.2Weight重力
Gravityisthedownwardforceattractingallbodiesvertically
towardsthecentreoftheearth.Thegravitationalforceisweight.
Thetotalweightoftheloadedaeroplanemaybeconsideredasa
singleforceactingthroughthecentreofgravity.
thecentreofgravity重心(CG)
wingloading(翼載)
=theweightsupportedperunitareaofwing
=weightofaircraft/wingarea
Atypicaltrainingaeroplane:W=1220kg,S=20m2
wingloading=W/S=1220/20=61kg/m2
B-747wingloading=500kg/m2
ThepositionoftheCGis
shownindiagramswith
Weight▼acentroidsymbol:0
Figure2.1-4Weigh:acxscow
Throughthecentreofgravity(CG)
3.3Lift升力
Theproductionoftheliftforcebyanaerofoilisexplainedby
Bernoulli'sprinciple.
3.3.1Boundarylayer(邊界層,附面層)
laminar層流
turbulent湍流
attachedflow附著流
separationflow分離流,separationpoint分離點(sp)
transition轉(zhuǎn)振transitionpoint轉(zhuǎn)振點
transitionregion轉(zhuǎn)抿區(qū)
Allfluidshaveacertainstickinessandthereforearesistanceto
flow.Thisiscalledviscosity.Gasesarenothighlyviscousbutthere
isstilladegreeofstickiness.Inthecaseofawing,themoleculesof
airimmediatelyadjacenttothesurfacebecomeattachedtothe
surfaceandhavearelativevelocityofzero.Moleculesslightly
furtherawayfromthewingaredraggedalongbythe'attached5
moleculesbeneath.Thefurtherfromthewing,thelesstheairis
draggedalong,andhencethegreateristherelativevelocity.Alayer
isformed.Thelayersofairthatextendfromthesurfaceouttothe
freestreammakeuptheboundarylayer.
Thechangefromlaminartoturbulentflowtakesplaceatthe
transitionpoint,inthetransitionregion
aFreestream
aairflow
A,
-------------?Boundarylayer(afewmmthick)
----------?--------?affectedbyskinfrictiondrag-
----a--------------reducedrelativevelocity
AerofoiI-----------_____
00B6.EPS.Z--.—.....L..........
Figure2.1-7Boundarylayer
Transition
region
streamlineflow
——--------------..------------------------------------------
,一,?------------------------------------————-----------
---------------?■------------------------------
006二ept
Figure2.1-8Sweamiineflow
Figure2.1-9S:reamhneflowisaesirao.eMOLTCarw
turbulentflow
Thin,laminar-TransitionTransmonSeparation
flowboundarypointpointpoint
layer
Slightlythicker,
luroulent
boundarylayer
Figure2.1-10Streamlineflowis
3.3.2Pressuredistribution(壓強(qiáng)分布,壓力分布)
Figure2.1-28
Distributionofstaticpressure
aroundacamberedaerofoil
a:apositiveangleofattack.
Pressuredistributionaroundacambered
aerofoilatvaryinganglesofattack
o
2
o
^6
s
8-1
m.6
s
s
a
i-1.
d-1.,4
312
>
Q
6L9
e
N
48
-0.6
.2
C5J
B
m
s
s
e
Q
8OG
A
三
s0.8
o
j
1.0
UE50%T/E
ChordQIRTR
1-12Pressuredistribution
pressuredistributionchangeswithangleofattack.
a=4。,-4°,12°,20°
noliftforcebeyondthestallingangle
CL-CLMAXCt=acrit(臨界迎角)
+4°
Figure2.1-30
Staticpressuredistribution
atvariousanglesofattack.
O
CCJ
a
m
s
s
e
i
d
q
巨
ITE
1“7Plotofpressurecoefficients(Cp)
atagivenangleofattack
3.3.3Liftfromatypicalwing
Thetotaleffectofthispressurepatternistoprovideanetupwards
force(lift)atpositiveangleofattacktogetherwithanetrearwards
force(drag).Thisactingpointisthecenterofpressure(cp).
Liftisacomponentofthetotalaerodynamicforceactingthrough
thecp,liftactsperpendiculartotheflightpath.
口,£reaction
/?
_也色line/—|:7.
Angleofr~(^-J^^Drag
aitacKI+.
RelativeaMow
Figure2.1-24Revivea-
Litt
LittL_________________盤
理
sag先W-
----_?,一■"-------------二--
------------------,aMorecamcer-morehh.
,"-------------------------------------Figure2.118
1
--------w
9137^.eC.jacurve
Figure2”/
liftfromatypicalwing
L/(l/2p/s)
r(q=l/2pv)
Lift二L二qsCL4
Figure2.1-33
Coefficientofliftversusangleofattack.
EachangleofattackproducesaparticularC,value.
Liftdependson:
wingshape(aerofoilsection);
angleofattack(AOA);
airdensity;(p)
freestreamvelocity(trueairspeed)(V2);
wingsurfacearea(S)
coefficientoflift,(CL),“l(fā)iftingability^^ofwing
Forsteadystraightandlevelflight,lift=weight
liftequationlift=weight=L=W=l/2pv2sCb
1,Airfoil
1)Airfoilterminology翼型術(shù)語
a,chordline弦線,(MAC:meanaerodynamicchord)
b,leadingedge前緣
c,trailingedge后緣
d,chord弦長
e,meancamberline平均彎度線
f,maximumcamber最大彎度
g,locationofmaximumcamber最大彎度位置
h,maximumthickness最大厚度
i,locationofmaximumthickness最大厚度位置
j,leadingedgeradius前緣半徑
2)Airfoilshapes翼型形狀
a,typicalwellcamberedaerofoil(high-lift,low-speedwing);
b,typicalhighspeedaerofoil;
c,typicallaminar-flowaerofoil;
d,symmetricalaerofoilo
Awell-camberedaerofoilAsymmetricalaerofoil
typicalhigh-lift,low-speedwing;(typicalHorizontalstabiliser)
LeadingecgeTrailingedgeLeadingedgeTrailingecge
Atypicalhigh-speedaerofoilAtypicallaminar-flowaerofoil
Figure2.1-16Variousaerofc:!cross-sections.
Atypicallaminar-flowaerofoil
Amorecamberedaerofoil?
Figure2.1-36
Comparisonofaerofoilcross-sections
?thelaminar-flowwing
littercamber,fairlysharpleadingedgeradius一agreater
distancelaminarflow—>lessprofiledrag(atlowangleof
attack)—>highercruisespeed(高巡航速度),lowerfuel
consumption(低油耗),greaterrange(大航程),
but—*lesslift(athighangleofattack)
一airflowseparationismoresudden
TowervalueofCLMAX-higherstallingspeed
Alaminarflowwingismoresusceptible(敏感)toasurface
condition.
?supercriticalwingsection超臨界剖面(超臨界翼型)
Supercriticalwinesectionsallowincreasedmiisingspeedbin.lisopermirgreater
rangetoragiven.lirtrame.enginemixbyallowingreducedfueldowin:herinse.Fig-
ure2-1shows.1supercrincalwingsection.
2-19Typicalsupercriticalwingcross-section
supercriticalwingsection:flattenthetopsurface
reflexcamber(反彎度)
toincreaseMCR(criticalMachnumber)一
delaytheformationofshockwave(duetotheflattentopsurface)
reflexcamberattherearundersurface—>increasedcruisingspeed
一thegreaterrange
2,Factorsaffectingthecoefficientoflift
1)Boundarylayer邊界層,附面層
Aturbulentboundarylayerproducesmoredragandlessliftbut
actuallyremainsattachedtothewingathigherangleofattack,
separationisdelayed.
2)Angleofattack(AOA)迎角,攻角
1.24Effectolangleofattackonseparation
Atlowerangleofattack,thereisalinearincreaseinCLfora
givenincreaseinangle,butjustbeforethestallingangleis
reached,therateofincreaseofCLreduces.Atthestall,thereisrapid
reductionofCLbutnotethatthewingisstillproducingsomelift.
3)Aerofoilshapeandwingplanform翼型形狀及機(jī)翼平面形狀
a,leading-edgeradius前緣半徑
Leading-edgeradiusaffectstheCLatornearthepointofthestall
withthesmallradiusproducingamoresuddenandmoresevere
effectontheCLcurveandthelargeradiusgivingahighervalueof
CLandamoreprogressivestallandgentlerflatteningoftheCL
curve.
b,camber彎度
asymmetricalaerofoil:a=0°CL=0
acamberedaerofoil:a=0°CL#0
Forthesameangleofattackthesymmetricalsectionhasalower
valueofCL,butthecamberedsectiongivesahighervalueofCLand
alsoproducesahighermaximumvalueofCLatthestallandalower
criticalangleofattack.
Increasingcamber
Symmetrical
/section
A
Angleofatuck
V26EffectofcamberonCL/(icurve
c,aspectratio展弦比
Theliftofalowaspectratiowingwillincreaseata
lowerratewithincreasingangleofattackthanthelift
onahighaspectratiowing.
d,sweepback后掠角
e,surfacecondition表面狀態(tài),表面條件
Roughnessofthewingsurfacewilleffecttheconditionofthe
boundarylayerandthusabilityofthewingtogeneratelift.
4)ReynoldsNumber雷諾數(shù)Re,R,
R=pvL/]ip=density密度
V=TAS真空速
L=chordlength弦長
「viscosity粘性系數(shù)
ReynoldsNumber(RI
Rswherep=density
V=TAS
L=chordlength
|i=viscosity
IfVisincreased,ReynoldsNumberwillincreaseandsotheair
flowhasmoreenergy,givingahighervalueofCtmax-Thisisbecause
athigherspeeds,forsameangleofattack,theboundarylayerwill
receivemorekineticenergywhichwillresultindelayedseparation
andconsequentlyahighermaximumvalueofCL.
AreductionofindensityathighaltitudewillreduceReandhence
reduceCtmax.Againthereasonislinkedwiththeenergyofthe
boundarylayer.Alowerdensitygiveslowermassandhencelower
kineticenergysincekineticenergyisafunctionofmassaswellas
speed.(KE=l/2mv2)
5)Machnumber馬赫數(shù)M=v/av:truespeed真空速
a:localspeedofsound音速
ThecoefficientofliftwillincreasewithincreasingMachnumber
atlowairspeed.
3,Thecentreofpressure(CP)壓力中心,壓心
:Angleofattackincreasesasairspeedreduces
togeneratethesamelift
Figure2.1-32Movemen!ofthecentreofpressure-camberedaerofoil.
af—>CLT(increasingtheliftingabilityofwing)一CPmoves
forward,
a=acritCPmovesback
1-18CPmovementwithincraasing?
donotconfusethepitchattitudeofaircraft(thelongitudinalaxis
relativetothehorizon)withtheangleofattack(thelongitudinalaxis
relativetotheairflow)andwiththeangleofincidence(the
longitudinalaxisrelativetothechordline).
Figure2.1-27
Theangleofincidenceisfixed
Longitudinalaxisduringdesignandconstruciion
ofaeroplaneOITBEPS
theangleofincidence安裝角longitudinalaxis縱軸
3.3.4Highliftdevices
highliftdevices高升力裝置,增升裝置
k'
Figure21-38
Cessnaelectricflapsystem.
1,Usinghigh-liftdevicespurpose
forexample:cruisespeedVeru-120knots,
stallingspeedVs=60knots,CLTfourtimesthe
coefficientoflift.
Usinghigh-liftdevices,togivetherequiredadditionalliftata
lowerspeed.
Lift=weight=CLxv2pV"xS
FinewingWell-camberedwino
Figure2.1-39SameaspeedCMana-faosrgne:,,:
InstraightandlevelflightL=W=l/2pv2sCt
40KIAS
Stallspeedwithfullflap
Figure2.1-40Flapslowerthestallingspeedandnoseauitude
H=const.—>p=const.,s]andchangingaerofoilshape一Cj,
Therequiredliftcanbegeneratedatmuchlowerspeeds.Thisis
thepurposeofthehigh-liftdevices.
2
L=W=l/2pvssCLmaxVS=^2W/(psCLmax)CimaxT-^Vs]
2,thetypesofhigh-liftdevices
Figure5.29Varioustypesofhigh-liftdevices.
1)leadingedgedevices前緣裝置
?slats縫翼:increasingtheliftcoefficientatveryhighangleof
attack.
Figure2.1-44Siorsaeiaythestall.
Slatscausesomeofthehighenergyairflowbeneaththewingto
flowthroughaslotandovertheuppersurfaceofthewing,thereby
delayingseparationandthestall,allowingtheaeroplanetoflyata
higherangleofattackandalowerairspeed.
Figure2.1-42Fu;l-spans(a*:1,
?leadingedgeflaps前緣襟翼:changingtheeffectivecurvature
oftheleadingedge,controllingtheflowathigherangleofattack.
?Krugerflaps克魯克襟翼:improvingleadingedgeflow
condition,delayingleadingedgeseparation.
Functionofleadingedgedevicesisfollowing:
①usingthegapflow(slat-fixedslotsandautomaticslats)
②droopingthefrontsectionofwing(leadingedgeflaps)
(3)usingKrugerflapswhichfoldout(折疊)fromunderthe
leadingedge
1-slat2-wingtip3-aileron4-flap
2)trailingedgedevices后緣裝置
?simpleflaps(plainfliips)簡單襟翼
?splitfliips開裂式襟翼
?slottedflaps開縫襟翼(asingleslotormultipleslots)
?Fowlerflap富勒式襟翼(后退開縫襟翼)
Figure2.1-41FullflapontheCessna172
Figure2.1-45
Efiec:ofleading-edgeandrailing-edgeflapsonCLmax
Thetrailingedgeflapsincreasethecamberoftheaerofoilsection,
orwingareaorusinggapflow.
Thegreaterthemeancamberline,thegreatertheliftcapability
(themaximumCLpossible)ofthewing.
3,effectsofflaps
1)increasedlift"aballoon"Tiftflaps”
Balloon
Traihng-edgeflaps
extendedhere
—一—一
Trailing-edgeflapsextendedalong
withachangeinthepitchattitude
Figure2.1-47Loweringflapcancauseaballoonunless:hepilotadiusisthepitchauitude
2)pitchingmoment
CPmovesaft—>longermomentarm一nose-downpitching
moment
L
A
Longermomentarmwfr??$
Figure2.1-48?.:?..-^jse:ne-icDHCH(downinthiscase).
3)decreasedlift/dragratio
Thedragincreaseisgreaterthantheliftincreases,soL/D1.
4)increaseddrag“dragflaps”
IAS70ktIAS55kt
WW
Clean
Figure2,1-49
Expendingflap-eithermorethrustorasleeper
descen:isrequirediooalancetnemcreasecdrag
5)lowerstallingangle
Figure2.1-50Flapextensionlowersthestallingangle
flapsdown一lowerstallingangle一flatterattitude
Figure2.1-51Sameaircraftpitchaunudesbutdifferemanglesofattack.
4,flapsfortake-off
Cleantake-off
(noflaps)、
Take-off
withflaps
extended
MfBIPS
Figure2.1-52Facsaiiowashonertake-offgrourarun
attake-offpositionbypartiallyloweringtheflaps
—>CLT,CDT(asmallpenalty)一lowerspeed-ashorter
take-offgroundrun
Whenretracttheflaps:
一CL1—>aircraftsinks(needtorisethenose,af)
一reductionofthecamberattherearofthewing
一movingthecentreofpressureforwards一thenose
topitch一retrimming
一CD1
5,flapsforapproachandlanding
atapproachandlandingbyloweringtheflaps-CJ,CDTT一a
lowerspeed
ballooning-CLT
pitchattitude-movingthecentreofpressure
?flapsincreasethepilotforwardview(視里子)
Withtrailingedgeflapsextended,theaeroplane'srequired
noseattitudeislower一Theimprovesforwardviewforthepilot.
Figure2.1-53Extendedflapsimorovethepile:sforwarc,viewandincreasedrag
3.4Drag阻力
Dragactsintheoppositedirectiontotheaircraft'smotionthrough
theair.Thethrustistoovercomedrag.
Thelowerthedrag,thelessthethrustrequired.
Thrustaboveandbeyondthatrequiredtoovercomedragisused
toclimb,accelerateandmanoeuvretheaircraft.Itiscalledexcess
thrust(富裕推力)
Figure2.1-54:?:::J-
Totaldragisthesumofallforcesactingparalleltoflight-pathof
theaircraft.
Figure2.1-55Tote:cracsthe:o:a'airresisrance:c-notion
Atsubsonicspeedsitisnormaltosubdividedragintotwomain
types
▲parasitedrag廢阻,寄生阻力Cdo
(alsoknownaszero-liftdrag零升阻力)
▲induceddrag誘導(dǎo)阻力,Cdi
(sometimesreferredtoaslift-dependentdrag升致阻力)
Cd=Cdo+Cdi
3.4.1Parasitedrag
Parasitedragincludessurfacefrictiondrag,formdragand
interferencedrag.
1,surfacefrictiondrag表面摩擦阻力,摩阻
1)Surface(orskin)frictiondragislargelydeterminedbythetotal
areaoftheaircraftthatisexposedtotheairflowingpastit.(wetted
area浸潤面積)
2)Thetypeofboundarylayerpresentalsohassignificanteffectwith
laminarflowcreatinglesssurfacefrictiondragthantheturbulent
flow.
3)Thethirdfactoraffectingsurfacefrictiondragisthecoefficientof
viscosityoftheair.Thegreatertheviscosity,thegreaterthedragging
effectoftheair.
Forminimumsurfacefrictiondrag,thetransitionfromlaminarto
turbulentmustbedelayedaslongaspossible.
2,formdrag型阻
pressuregradient壓強(qiáng)梯度
adversepressuregradient逆壓梯度,反壓梯度
reversepressuregradient逆壓梯度,反壓梯度
favorablepressuregradient順壓梯度
1-31Effectofadversepressuregradient
Whentheboundarylayerfinallyseparates,theseparatedflow
stillimpactsagainstsurfacecausingdrag.Thisisformdrag.
Effectsaremadetodelayseparationoftheboundarylayerinan
attempttoreduceformdrag.
Withgreaterkineticenergy,theboundarylayercanresistthe
effectsoftheadversepressuregradientforlonger,thedelaying
separationandreducedrag.
->Skinfcchondrac
0?6AEPS
Figure2.1-56Skinfricnondragandformdrag
SeparationpointSeparationpoint
Figure2.1-59
Icewillr.crease
drag(ancweicn*)
wake尾跡,protuberance突起物,fineness長細(xì)比
fairing整流罩,iceaccretion冰生成,
frontalarea迎風(fēng)面積(最大橫截面積)
Figure2.1-60Streamlining,especiallybenmdtheshaoe.reaucesformdragsubsiantially
3,interferencedrag干擾阻力
Thetotalparasitedragofanaeroplaneisgreaterthanthesumof
surfacefrictiondragandformdrag.Theadditionaldragiscausedby
mixing,orinterferenceoftheboundarylayerairflowatthejunction
ofvarioussurface,suchasatthewing/fuselagejunction,thetail
section/fuselagejunctionandthewing/enginenacellejunction.
Suitablefilleting(倒角),fairing,streamliningofshapes
minimizethisinterferencedrag.
4,summaryofparasitedrag
3Parasite-
Pdrag0cTAS2
9
M
CD
0』
d
?SlowIASFast
1-33EffectofIASonparasiticdrag
Parasitedragincreaseswithairspeed,atveryhighspeedsnearly
allthetotaldragiscausedbyit.
Thepredominanceofparasitedragathighspeedsshowstheneed
foraerodynamic“cleanness“toobtainmaximumperformance.
ParasitedragisdirectlyproportionaltothesquareofTAS,and
doublingthespeedwillquadrupletheamountofparasitedrag.
3.4.2Induceddrag
1,Howinduceddragiscaused?
vortex—>vortices,vortexes(復(fù)數(shù))旋渦
wingtipvortex翼尖渦
downwash下洗
induceddownwash誘導(dǎo)下洗
downwashangle下洗角
remoteflow遠(yuǎn)前方耒流
Induceddragisadirectresultoftheaircraftproducinglift.
Thedifferenceinpressurebetweentheupperandlowersurfaceof
thewingcausesairtospillaroundthetip,deflectingtheupper
surfaceflowtowardsthefuselageandthelowersurfaceflowtoward
thetips.
Asthetwoflowsmeetatthetrailingedgeaseriesofvorticesis
formed,whichaccumulateatthetiptoformalargewingtipvortex.
Whenthepressuredifferencebetweentheupperandlowersurface
isincreased(morelift),thenthesizeofthevortexwillincreasealso.
Induceddrag
a=angleofattack
toeffectiveflow
5=angleofinduced
downwash
Notes:1.'Lift'producedis90°
toeffectiveflow,but
thismustbeincreased
togive^desiredlift*at
90°toremoteflow.
2.AmountofInduceddrag
islargelydetermined
byangleofInduceddown-
wash.U1.i.e.sizeofvortex.
1?37Effectofdownwashangleonamountofinduceddrag
CCLwithA=aspectratio
D|-?An=pi(3.1416)
Productionoflift—*wingtipvorticesandtrailingedgevortices
fbrm一downwash一localrelativeairflowdirectionchanges一
liftisinclinedbackward一induceddrag(paralleltotheremote
relativeairflow)
2,Factorsaffectinginduceddrag
1)planform機(jī)翼平面形狀
elliptical那青園的
ellipticalplanform:Cdi=CL2/7rAA=aspectratio
Theellipticalplanformhasminimuminduceddrag.
1-38Spanwiseliftdistribution
2)aspectratio展弦比
A=b?/sb=spanlengthsowingarea
A=b/cc=meanchord
Atthesameareaofwing,anarrowwingofhighaspectratio(a
smallwingtips)hasweakerwingtipvortices,lessinduceddownwash
andlessinduceddrag.
Chord*
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)美醫(yī)生合同范本
- 低層房屋租賃合同范本
- 高中拓展訓(xùn)練合同范本
- 委托合同范本由誰提供范本
- 鋼筋工地勞務(wù)合同范本
- 特殊貨車出售合同范本
- 廠內(nèi)訂單合同范本
- 房屋租賃合同 (三)
- 零售藥店醫(yī)療保障定點管理
- 香港中文大學(xué)(深圳)《口腔頜面外科學(xué)實驗二》2023-2024學(xué)年第二學(xué)期期末試卷
- 數(shù)學(xué)-山東省青島市2025年高三年級第一次適應(yīng)性檢測(青島一模)試題和答案
- 2025年石家莊市高三數(shù)學(xué)教學(xué)質(zhì)量檢測卷(一)附答案解析
- 8.4 同一直線上二力的合成 (課件)2024-2025學(xué)年人教版八年級物理下冊
- 統(tǒng)計法律知識培訓(xùn)課件
- 活動三《垃圾“流浪”記》(教學(xué)設(shè)計)-2023-2024學(xué)年三年級下冊綜合實踐活動滬科黔科版
- 2024-2025學(xué)年上海六年級語文上學(xué)期期末復(fù)習(xí)分類匯編:現(xiàn)代文閱讀之說明文15篇(熱點預(yù)測)
- 杭州市2025年官方拆遷補(bǔ)償協(xié)議
- 2025年2月廣東省深圳市羅湖區(qū)聯(lián)考初三年級質(zhì)量檢測英語試卷(含答案)
- 2025年南京科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 互聯(lián)網(wǎng)金融 個人網(wǎng)絡(luò)消費(fèi)信貸 貸后催收風(fēng)控指引
- 下穿渝合高速施工方案
評論
0/150
提交評論