版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市南開區(qū)2024屆高一數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,已知,,共線,且向量,則()A. B.C. D.2.下列函數(shù)滿足在定義域上為減函數(shù)且為奇函數(shù)的是()A. B.C. D.3.已知則當(dāng)最小時的值時A.﹣3 B.3C.﹣1 D.14.某幾何體的三視圖如圖所示,則該幾何體的體積是A. B.8C.20 D.245.“當(dāng)時,冪函數(shù)為減函數(shù)”是“或2”的()條件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要6.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2C.若a>b,ab<0,則1a>1b D.若a7.函數(shù)的零點的個數(shù)為A. B.C. D.8.若點、、在同一直線上,則()A. B.C. D.9.不等式的解集為()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}10.集合中所含元素為A.0,1 B.,1C.,0 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)(且)只有一個零點,則實數(shù)的取值范圍為______12.已知冪函數(shù)的圖象過點,則______.13.若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),則實數(shù)的取值范圍是_______.14.已知函數(shù),則_________15.已知函數(shù)是定義在上且以3為周期的奇函數(shù),當(dāng)時,,則時,__________,函數(shù)在區(qū)間上的零點個數(shù)為__________16.設(shè)為三個隨機事件,若與互斥,與對立,且,,則_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期及對稱軸方程;(2)若,求的值.18.已知函數(shù),(1)求最小正周期;(2)求的單調(diào)遞增區(qū)間;(3)當(dāng)時,求的最大值和最小值19.計算(1)-(2)20.心理學(xué)家通過研究學(xué)生的學(xué)習(xí)行為發(fā)現(xiàn);學(xué)生的接受能力與老師引入概念和描述問題所用的時間相關(guān),教學(xué)開始時,學(xué)生的興趣激增,學(xué)生的興趣保持一段較理想的狀態(tài),隨后學(xué)生的注意力開始分散,分析結(jié)果和實驗表明,用表示學(xué)生掌握和接受概念的能力,x表示講授概念的時間(單位:min),可有以下的關(guān)系:(1)開講后第5min與開講后第20min比較,學(xué)生的接受能力何時更強一些?(2)開講后多少min學(xué)生的接受能力最強?能維持多少時間?(3)若一個新數(shù)學(xué)概念需要55以上(包括55)的接受能力以及13min時間,那么老師能否在學(xué)生一直達到所需接受能力的狀態(tài)下講授完這個概念?21.已知函數(shù),(1)若,求的單調(diào)區(qū)間;(2)若有最大值3,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由已知得,再利用向量的線性可得選項.【詳解】因為,,,三點共線,所以,所以.故選:D.2、C【解析】根據(jù)各個基本初等函數(shù)的性質(zhì),結(jié)合函數(shù)變換的性質(zhì)判斷即可【詳解】對A,為偶函數(shù),故A錯誤;對B,為偶函數(shù),故B錯誤;對C,在定義域上為減函數(shù)且為奇函數(shù),故C正確;對D,在和上分別單調(diào)遞減,故D錯誤;故選:C【點睛】本題主要考查了常見基本初等函數(shù)的性質(zhì),屬于基礎(chǔ)題3、B【解析】由題目已知可得:當(dāng)時,的值最小故選4、C【解析】由三視圖可知,該幾何體為長方體上方放了一個直三棱柱,其體積為:.故選C點睛:三視圖問題的常見類型及解題策略(1)由幾何體的直觀圖求三視圖.注意正視圖、側(cè)視圖和俯視圖的觀察方向,注意看到的部分用實線表示,不能看到的部分用虛線表示(2)由幾何體的部分視圖畫出剩余的部分視圖.先根據(jù)已知的一部分三視圖,還原、推測直觀圖的可能形式,然后再找其剩下部分三視圖的可能形式.當(dāng)然作為選擇題(3)由幾何體的三視圖還原幾何體的形狀.要熟悉柱、錐、臺、球的三視圖,明確三視圖的形成原理,結(jié)合空間想象將三視圖還原為實物圖5、C【解析】根據(jù)冪函數(shù)的定義和性質(zhì),結(jié)合充分性、必要性的定義進行求解即可.【詳解】當(dāng)時,冪函數(shù)為減函數(shù),所以有,所以冪函數(shù)為減函數(shù)”是“或2”的充分不必要條件,故選:C6、C【解析】根據(jù)不等式的性質(zhì)或通過舉反例,對四個選項進行分析【詳解】A.若a>b,當(dāng)c=0時,ac2=bB.若ac>bc,當(dāng)c<0時,則C.因為ab<0,將a>b兩邊同除以ab,則1a>1D.若a2>b2且ab>0,當(dāng)a<0b<0時,則a<b故選:C7、B【解析】略【詳解】因為函數(shù)單調(diào)遞增,且x=3,y>0,x=1,y<0,所以零點個數(shù)為18、A【解析】利用結(jié)合斜率公式可求得實數(shù)的值.【詳解】因為、、在同一直線上,則,即,解得.故選:A.9、B【解析】把不等式化為,求出解集即可【詳解】解:不等式可化為,即,解得﹣1<x<4,所以不等式的解集為{x|﹣1<x<4}故選:B【點評】本題考查了一元二次不等式的解法,是基礎(chǔ)題10、A【解析】,解,得,故選二、填空題:本大題共6小題,每小題5分,共30分。11、或或【解析】∵函數(shù)(且)只有一個零點,∴∴當(dāng)時,方程有唯一根2,適合題意當(dāng)時,或顯然符合題意的零點∴當(dāng)時,當(dāng)時,,即綜上:實數(shù)的取值范圍為或或故答案為或或點睛:已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解12、【解析】結(jié)合冪函數(shù)定義,采用待定系數(shù)法可求得解析式,代入可得結(jié)果.【詳解】為冪函數(shù),可設(shè),,解得:,,.故答案為:.【點睛】本題考查冪函數(shù)解析式和函數(shù)值的求解問題,關(guān)鍵是能夠明確冪函數(shù)的定義,采用待定系數(shù)法求解函數(shù)解析式,屬于基礎(chǔ)題.13、【解析】先求出拋物線的對稱軸方程,然后由題意可得,解不等式可求出的取值范圍【詳解】解:函數(shù)的對稱軸方程為,因為函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),所以,解得,故答案為:14、【解析】運用代入法進行求解即可.【詳解】,故答案為:15、①.②.5【解析】(1)當(dāng)時,,∴,又函數(shù)是奇函數(shù),∴故當(dāng)時,(2)當(dāng)時,令,得,即,解得,即,又函數(shù)為奇函數(shù),故可得,且∵函數(shù)是以3為周期的函數(shù),∴,,又,∴綜上可得函數(shù)在區(qū)間上的零點為,共5個答案:,516、【解析】由與對立可求出,再由與互斥,可得求解.【詳解】與對立,,與互斥,故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)周期,對稱軸;(2)【解析】(1)化簡函數(shù),根據(jù)正弦函數(shù)的性質(zhì)得到函數(shù)的最小正周期及對稱軸方程;(2)由題可得,結(jié)合二倍角余弦公式可得結(jié)果.【詳解】(1),,∴的最小正周期,令,可得,(2)由,得,可得:,【點睛】本題考查三角函數(shù)的性質(zhì),考查三角恒等變換,考查計算能力,屬于基礎(chǔ)題.18、(1)(2),(3)最大值為,最小值為【解析】(1)由周期公式直接可得;(2)利用正弦函數(shù)的單調(diào)區(qū)間解不等式可得;(3)先根據(jù)x的范圍求出的范圍,然后由正弦函數(shù)的性質(zhì)可得.【小問1詳解】的最小正周期【小問2詳解】由,,得,.所以函數(shù)的單調(diào)遞增區(qū)間為,【小問3詳解】∵,∴當(dāng),即時,當(dāng),即時,.19、(1);(2).【解析】(1)綜合利用指數(shù)對數(shù)運算法則運算;(2)利用對數(shù)的運算法則化簡運算.【詳解】解:(1)原式;(2)原式【點睛】本題考查指數(shù)對數(shù)的運算,屬基礎(chǔ)題,在指數(shù)運算中,往往先將冪化為指數(shù)冪,然后利用指數(shù)冪的運算法則化簡;在對數(shù)的運算中,要注意的運用和對數(shù)有關(guān)公式的運用.20、(1)開講后第5min比開講后第20min,學(xué)生接受能力強一些.;(2)6min;(3)詳見解析.【解析】第一步已知自變量值求函數(shù)值,比較后給出答案;第二步是二次函數(shù)求最值問題;第三步試題解析:(1),,則開講后第5min比開講后第20min,學(xué)生的接受能力更強一些.](2)當(dāng)時,,當(dāng)時,開講后10min(包括10分鐘)學(xué)生的接受能力最強,能維持6min.(3)由當(dāng)時,,得;當(dāng)時,,得持續(xù)時間答:老師不能在學(xué)生一直達到所需接受能力的狀態(tài)下講授完這個概念.考點:1.求函數(shù)值;2.配方法求二次函數(shù)的最值;3.分段函數(shù)解不等式.21、(1)遞減區(qū)間為,遞增區(qū)間;(2).【解析】(1)當(dāng)時,設(shè),根據(jù)指數(shù)函數(shù)和二次函數(shù)的單調(diào)性,結(jié)合復(fù)合函數(shù)的單調(diào)性,即可求解;(2)由題意,函數(shù),分,和三種情況討論,結(jié)合復(fù)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時,,設(shè),則函數(shù)開口向下,對稱軸方程為,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減,又由指數(shù)函數(shù)在上為單調(diào)遞減函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在單調(diào)遞減,在單調(diào)遞增,即函數(shù)的遞減區(qū)間為,遞增區(qū)間.(2)由題意,函數(shù),①當(dāng)時,函數(shù),根據(jù)復(fù)合函數(shù)的單調(diào)性,可得函數(shù)在上為單調(diào)遞增函數(shù),此時函數(shù)無最大值,不符合題意;②當(dāng)時,函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022《創(chuàng)新設(shè)計》江蘇專用高考英語二輪專題復(fù)習(xí)-沖刺演練-綜合模擬預(yù)測卷(一)
- 天津市河北區(qū)2023-2024學(xué)年八年級下學(xué)期期末考試語文試題(無答案)
- 【名師一號】2020-2021學(xué)年新課標(biāo)版物理選修3-1-第一章靜電場雙基限時練8
- 山東省日照市實驗中學(xué)2024-2025學(xué)年七年級上學(xué)期 歷史期末試題(含答案)
- 五年級上冊語文期末模擬試題及答案
- 【紅對勾】2020年高中化學(xué)(人教版-必修二)-第3章-第4節(jié)-課時作業(yè)23
- 【優(yōu)教通】2021年高一生物同步練習(xí):4.1.2-酶作用特性及其影響因素(蘇教版必修1)-
- 上海市各區(qū)2021屆高三英語一模試卷分類匯編:寫作專題
- 《瑜伽健身》課件
- 2022法律知識競賽參考題庫300題(含答案)
- MOOC 數(shù)字電路分析與設(shè)計-浙江大學(xué) 中國大學(xué)慕課答案
- 安徽華塑股份有限公司華塑股份產(chǎn)品結(jié)構(gòu)調(diào)整改造一體化項目年產(chǎn)12萬噸生物可降解新材料環(huán)境影響報告書
- 110KV變電站工程創(chuàng)優(yōu)監(jiān)理實施細則
- 個人信用報告異議申請表
- 蒸汽管道專項施工方案
- 檢驗批劃分大全16頁
- 教材中醫(yī)方劑學(xué)
- 2022年2022年電子信息系統(tǒng)機房設(shè)計規(guī)范
- 下鼻甲生理、解剖、血供
- 賓館電視機購銷合同協(xié)議
- 風(fēng)機風(fēng)管拆除制作安裝施工方案
評論
0/150
提交評論