一元二次方程的解法教學(xué)反思6篇_第1頁
一元二次方程的解法教學(xué)反思6篇_第2頁
一元二次方程的解法教學(xué)反思6篇_第3頁
一元二次方程的解法教學(xué)反思6篇_第4頁
一元二次方程的解法教學(xué)反思6篇_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一元二次方程的解法教學(xué)反思6篇一元二次方程的解法教學(xué)反思1

(1)一元二次方程是研究現(xiàn)實世界數(shù)量關(guān)系和變化規(guī)律的重要模型,引課時從生活中常見的'“梯子問題”出發(fā),根據(jù)學(xué)生應(yīng)用勾股定理時所列方程的不同,引導(dǎo)學(xué)生對所列方程的解法展開討論,進(jìn)而獲得開平方法。引課時力求體現(xiàn)“問題情境——建立數(shù)學(xué)模型——解釋、應(yīng)用與拓展”的模式,注重數(shù)學(xué)知識的形成與應(yīng)用過程。

(2)如何配方是本節(jié)課的教學(xué)重點與難點,在進(jìn)行這一塊內(nèi)容的教學(xué)時,教師提出具有一定跨度的問題串引導(dǎo)學(xué)生進(jìn)行自主探索;提供充分探索與交流的空間;在鞏固、應(yīng)用配方法時,從一元二次方程二次項系數(shù)為1講到二次項系數(shù)不為1的情況,從方程的配方講到代數(shù)式的配方與證明,呈現(xiàn)形式豐富多彩,教學(xué)內(nèi)容的編排螺旋式上升。這既提高了學(xué)生的學(xué)習(xí)興趣,又加深了對所學(xué)知識的理解。

一元二次方程的解法教學(xué)反思2

一元二次方程是整個初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無理方程及有關(guān)應(yīng)用性問題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基礎(chǔ)上,因此我采取讓學(xué)生帶著問題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號右邊必須為零,左邊必須為兩個一次因式的乘積(不能是加減運(yùn)算),利用零的特性,將求一元二次方程的解,通過因式分解法,轉(zhuǎn)化為求兩個一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來的問題,在全班及時糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。

老師提示:

1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;

2.關(guān)鍵是熟練掌握因式分解的知識;

3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零.

一元二次方程的解法教學(xué)反思3

通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。下面我就談?wù)勛约簩@節(jié)課的反思。這節(jié)課是一元二次方程解法的復(fù)習(xí)課,復(fù)習(xí)的思路是概念的梳理(方法的回憶)__實踐(方法的選擇)__應(yīng)用(方法的融合)。由于課前我做了精心準(zhǔn)備,所以整個課堂流暢、緊湊容量大。整節(jié)課充滿著”自主、合作、探究,交流“的教學(xué)理念,使學(xué)生在主動思考探究的過程中自然的獲得新的知識。

需要改進(jìn)的方面:

1、設(shè)計的問題太多,學(xué)生在課堂上沒有辦法消化。

2、學(xué)生的積極性沒有調(diào)動起來。

通過本節(jié)課的教學(xué),我覺得課堂就應(yīng)該交給學(xué)生,而不是一味的填鴨式灌輸給學(xué)生,這樣反而達(dá)不到預(yù)期的效果。

一元二次方程的解法教學(xué)反思4

利用求根公式解一元二次方程的一般步驟:

1、找出a,b,c的相應(yīng)的數(shù)值;

2、驗判別式是否大于或等于0;

3、當(dāng)判別式的數(shù)值大于或等于0時,可以利用公式求根,若判別式的數(shù)值小于0,就判別此方程無實數(shù)解。

在講解過程中,我要求學(xué)生先進(jìn)行1、2步,然后再用公式求根。因為學(xué)生第一次接觸求根公式,求根公式本身就很難,學(xué)生可以說非常陌生,如果不先進(jìn)行1、2步,結(jié)果很容易出錯。首先,對于一些粗心的同學(xué)來說,a,b,c的符號就容易出問題,也就是在找某個項的系數(shù)或常數(shù)項時總是丟掉前面的符號。其次,一無二次方程的求根公式形式復(fù)雜,直接代入數(shù)值后求根出錯一定很多。但有少數(shù)心急的同學(xué),他們總是嫌麻煩,省掉1、2步,直接用公式求根。

為什么會這樣呢?我認(rèn)為有這幾方面的原因:

一是學(xué)生沒體會這樣做的好處,其實在做題過程中檢驗一下判別式非常必要,同時也簡化了判別式的值,給下面的運(yùn)算帶來方便。這樣做并不麻煩,而直接用公式求值也要進(jìn)行這兩步。

二是學(xué)生剛學(xué)習(xí)公式法,例題比較簡單,對于簡單的題,這樣做還可以,但一旦養(yǎng)成習(xí)慣,遇到復(fù)雜的習(xí)題就不好辦了。

三是部分學(xué)生老是想圖省事,沒學(xué)會走,就想跑,想一口吃個大胖子。

在今后的教學(xué)中,還要加強(qiáng)對新知識學(xué)習(xí)過程中格式和步驟的要求,并且對習(xí)慣不好的同學(xué)要進(jìn)行耐心細(xì)致的講解,讓他們認(rèn)識到這樣做的弊端,掌握正確的學(xué)習(xí)方法,提高正確率。

一元二次方程的解法教學(xué)反思5

利用求根公式解一元二次方程的一般步驟:

1、找出a,b,c的相應(yīng)的數(shù)值

2、驗判別式是否大于等于0

3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、

學(xué)生第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計學(xué)生的能力,結(jié)果出現(xiàn)錯誤較多、

1、a,b,c的符號問題出錯,在方程中學(xué)生往往在找某個項的系數(shù)時總是丟掉前面的符號

2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多、

其實在做題過程中檢驗一下判別式這一步單獨提出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做這一步在到求根公式時可以把數(shù)值直接代入、在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求達(dá)到更好的教學(xué)效果、

通過本節(jié)課的教學(xué),總體感覺調(diào)動了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生思維的火花,具體有以下幾個特點:

本節(jié)課第一個例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。

例2、3是例1的變式與提高,通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力提高,這是這節(jié)課中的一大亮點,在講完例題的基礎(chǔ)上,將更多的時間留給學(xué)生,這樣學(xué)生感覺到成功的機(jī)會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。

課堂上多給學(xué)生展示的機(jī)會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智??傊ㄟ^各種激勵的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。

需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。

一元二次方程的解法教學(xué)反思6

這是一節(jié)復(fù)習(xí)一元二次方程解法的課,主要通過復(fù)習(xí)一元二次方程的解法,了解學(xué)生對知識的掌握情況,加強(qiáng)對學(xué)生的學(xué)法指導(dǎo)。

本章內(nèi)容中重點為一元二次方程的解法和應(yīng)用。我將復(fù)習(xí)設(shè)為兩節(jié),第一節(jié)重點講解法。思路:以學(xué)生為主體,注重學(xué)生自我發(fā)現(xiàn),了解自己的不足,同時,注意加強(qiáng)運(yùn)算??偟脑O(shè)計思路較好,過程中有一個地方費(fèi)時較多,主要是我沒有吃透“課標(biāo)”,對于一元二次方程公式法的推導(dǎo)過程不應(yīng)讓學(xué)生推導(dǎo),因為在此費(fèi)時過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論