版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省曲靖市麒麟高中2024屆高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.若關(guān)于的不等式的解集為,則函數(shù)在區(qū)間上的最小值為()A. B.C. D.2.已知角的終邊與單位圓相交于點,則=()A. B.C. D.3.定義在上的偶函數(shù)的圖象關(guān)于直線對稱,當(dāng)時,.若方程且根的個數(shù)大于3,則實數(shù)的取值范圍為()A. B.C. D.4.已知是球的直徑上一點,,平面,為垂足,截球所得截面的面積為,則球的表面積為A. B.C. D.5.已知,,,則下列判斷正確的是()A. B.C. D.6.已知,則的值為()A.3 B.6C.9 D.7.關(guān)于函數(shù)的敘述中,正確的有()①的最小正周期為;②在區(qū)間內(nèi)單調(diào)遞增;③是偶函數(shù);④的圖象關(guān)于點對稱.A.①③ B.①④C.②③ D.②④8.若正實數(shù)滿足,(為自然對數(shù)的底數(shù)),則()A. B.C. D.9.已知,,,夾角為,如圖所示,若,,且D為BC中點,則的長度為A. B.C.7 D.810.盡管目前人類還無法準(zhǔn)確預(yù)報地震,但科學(xué)研究表明,地震時釋放出的能量E(單位:焦耳)與地震里氏M震級之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的能量與里氏震級分別為Ei與Mii=1,2,若A.103C.lg3 D.11.下列函數(shù)中,與函數(shù)的定義域與值域相同的是()A.y=sinx B.C. D.12.《九章算術(shù)》中,稱底面為矩形且有一側(cè)棱垂直于底面的四棱錐為陽馬,如圖,某陽馬的三視圖如圖所示,則該陽馬的最長棱的長度為()A. B.C.2 D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知冪函數(shù)在上單調(diào)遞減,則___________.14.設(shè)函數(shù)則的值為________15.已知函數(shù)是定義在的奇函數(shù),則實數(shù)b的值為_________;若函數(shù),如果對于,,使得,則實數(shù)a的取值范圍是__________16.在空間直角坐標(biāo)系中,設(shè),,且中點為,是坐標(biāo)原點,則__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.如圖,以軸的非負(fù)半軸為始邊作角與,它們的終邊分別與單位圓相交于點,已知點的橫坐標(biāo)為(1)求的值;(2)若,求的值18.△ABC的頂點坐標(biāo)分別為A(1,3),B(5,7),C(10,12),求BC邊上的高所在的直線的方程19.已知函數(shù).(1)當(dāng)時,求方程的解;(2)若,不等式恒成立,求的取值范圍.20.(1)計算:(2)已知,,,,求的值21.已知冪函數(shù)在上單調(diào)遞增,函數(shù)(1)求實數(shù)m的值;(2)當(dāng)時,記的值域分別為集合,若,求實數(shù)k的取值范圍22.已知(1)若在第三象限,求的值(2)求的值
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】由題意可知,關(guān)于的二次方程的兩根分別為、,求出、的值,然后利用二次函數(shù)的基本性質(zhì)可求得在區(qū)間上的最小值.【詳解】由題意可知,關(guān)于的二次方程的兩根分別為、,則,解得,則,故當(dāng)時,函數(shù)取得最小值,即.故選:A.2、C【解析】先利用三角函數(shù)的定義求角的正、余弦,再利用二倍角公式計算即可.【詳解】角的終邊與單位圓相交于點,故,所以,故.故選:C.3、D【解析】由題設(shè),可得解析式且為周期為4的函數(shù),再將問題轉(zhuǎn)化為與交點個數(shù)大于3個,討論參數(shù)a判斷交點個數(shù),進而畫出和的圖象,應(yīng)用數(shù)形結(jié)合法有符合題設(shè),即可求范圍.【詳解】由題設(shè),,即,所以是周期為4的函數(shù),若,則,故,所以,要使且根的個數(shù)大于3,即與交點個數(shù)大于3個,又恒過,當(dāng)時,在上,在上且在上遞減,此時與只有一個交點,所以.綜上,、的圖象如下所示,要使交點個數(shù)大于3個,則,可得.故選:D【點睛】關(guān)鍵點點睛:根據(jù)已知條件分析出的周期性,并求出上的解析式,將問題轉(zhuǎn)化為兩個函數(shù)的交點個數(shù)問題,結(jié)合對數(shù)函數(shù)的性質(zhì)分析a的范圍,最后根據(jù)交點個數(shù)情況,應(yīng)用數(shù)形結(jié)合進一步縮小參數(shù)的范圍.4、C【解析】設(shè)球的半徑為,根據(jù)題意知球心到平面的距離,截球所得截面圓的半徑為1,由,截面圓半徑,球半徑構(gòu)成直角三角形,利用勾股定理,即可求出球半徑,進而求出球的表面積.【詳解】如圖所示,設(shè)球的半徑為,因為,所以,又因為截球所得截面的面積為,所以,在中,有,即,所以,故球的表面積,故選:C.【點睛】本題主要考查球的基本應(yīng)用,答題關(guān)鍵點在于明確球心到截面的距離,截面圓半徑,球半徑三者可構(gòu)成直角三角形,進而滿足勾股定理.5、C【解析】對數(shù)函數(shù)的單調(diào)性可比較、與的大小關(guān)系,由此可得出結(jié)論.【詳解】,即.故選:C.6、A【解析】直接由對數(shù)與指數(shù)的互化公式求解即可【詳解】解:由,得,故選:A7、C【解析】應(yīng)用差角余弦公式、二倍角正余弦公式及輔助角公式可得,再根據(jù)正弦型函數(shù)的性質(zhì),結(jié)合各項描述判斷正誤即可.【詳解】,∴最小正周期,①錯誤;令,則在上遞增,顯然當(dāng)時,②正確;,易知為偶函數(shù),③正確;令,則,,易知的圖象關(guān)于對稱,④錯誤;故選:C8、C【解析】由指數(shù)式與對數(shù)式互化為相同形式后求解【詳解】由題意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故選:C9、A【解析】AD為的中線,從而有,代入,根據(jù)長度進行數(shù)量積的運算便可得出的長度【詳解】根據(jù)條件:;故選A【點睛】本題考查模長公式,向量加法、減法及數(shù)乘運算,向量數(shù)量積的運算及計算公式,根據(jù)公式計算是關(guān)鍵,是基礎(chǔ)題.10、A【解析】利用對數(shù)運算和指數(shù)與對數(shù)互化求解.【詳解】由題意得:lgE1=4.8+1.5兩式相減得:lgE又因為M2所以E2故選:A11、D【解析】由函數(shù)的定義域為,值域依次對各選項判斷即可【詳解】解:由函數(shù)的定義域為,值域,對于定義域為,值域,,錯誤;對于的定義域為,值域,錯誤;對于的定義域為,,值域,,錯誤;對于的定義域為,值域,正確,故選:12、B【解析】根據(jù)三視圖畫出原圖,從而計算出最長的棱長.【詳解】由三視圖可知,該幾何體如下圖所示,平面,,則所以最長的棱長為.故選:B二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】由系數(shù)為1解出的值,再由單調(diào)性確定結(jié)論【詳解】由題意,解得或,若,則函數(shù)為,在上遞增,不合題意若,則函數(shù)為,滿足題意故答案為:14、【解析】直接利用分段函數(shù)解析式,先求出的值,從而可得的值.【詳解】因為函數(shù),所以,則,故答案為.【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.15、①.0②.【解析】由,可得,設(shè)在的值域為,在上的值域為,根據(jù)題意轉(zhuǎn)化為,根據(jù)函數(shù)的單調(diào)性求得函數(shù)和的值域,結(jié)合集合的運算,列出不等式組,即可求解.【詳解】由函數(shù)是定義在的奇函數(shù),可得,即,經(jīng)檢驗,b=0成立,設(shè)在值域為,在上的值域為,對于,,使得,等價于,又由為奇函數(shù),可得,當(dāng)時,,,所以在的值域為,因為在上單調(diào)遞增,在上單調(diào)遞減,可得的最小值為,最大值為,所以函數(shù)的值域為,則,解得,即實數(shù)的取值范圍為.故答案為:;.16、【解析】,故三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)根據(jù)三角函數(shù)的定義,求三角函數(shù),代入求值;(2)由條件可知,,利用誘導(dǎo)公式,結(jié)合三角函數(shù)的定義,求函數(shù)值.【小問1詳解】的橫坐標(biāo)為,.【小問2詳解】由題可得,,.18、【解析】設(shè)所求直線方程的斜率為k.根據(jù)以,先求出高所在直線的斜率,進而利用點斜式即可求出;【詳解】設(shè)所求直線方程的斜率為k.因為所求直線與直線BC垂直,所以所以垂線方程為即.【點睛】熟練掌握兩條直線垂直與斜率的關(guān)系、點斜式是解題的關(guān)鍵19、(1)或;(2)【解析】(1)由題意可得,由指數(shù)方程的解法即可得到所求解;(2)由題意可得,設(shè),,,可得,即有,由對勾函數(shù)的單調(diào)性可不等式右邊的最大值,進而得到所求范圍【詳解】(1)方程,即為,即有,所以或,解得或;(2)若,不等式恒成立可得,即,設(shè),,可得,即有,由在遞增,可得時取得最大值,即有【點睛】本題考查指數(shù)方程的解法和不等式恒成立問題的解法,注意運用換元法和參數(shù)分離法,結(jié)合對勾函數(shù)的單調(diào)性,考查運算能力和推理能力,屬于中檔題20、(1)8;(2).【解析】(1)根據(jù)對數(shù)的運算法則即可求得;(2)根據(jù)同角三角函數(shù)的關(guān)系式求出和的值,然后利用余弦的和角公式求的值【詳解】(1);(2)∵,,∴,∵,,∴,∴.21、(1)(2)【解析】(1)由冪函數(shù)定義列出方程,求出m的值,檢驗函數(shù)單調(diào)性,舍去不合題意的m的值;(2)在第一問的基礎(chǔ)上,由函數(shù)單調(diào)性得到集合,由并集結(jié)果得到,從而得到不等式組,求出k的取值范圍.【小問1詳解】依題意得:,∴或當(dāng)時,在上單調(diào)遞減,與題設(shè)矛盾,舍去當(dāng)時,上單調(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44963-2024儲糧保水技術(shù)規(guī)范
- 電工電子技術(shù)(第3版) 課件 5.1.1 半導(dǎo)體及PN結(jié)
- 2024年新型節(jié)能型內(nèi)燃機項目資金需求報告
- 銀行風(fēng)險管理制度
- 采購合同管理及風(fēng)險防范制度
- 《供給與局部均衡》課件
- 保護古老文明-課件
- 《計算中心編制》課件
- 法學(xué)案例-洛克菲勒中心案例都市綜合體
- 《促銷督導(dǎo)入門指引》課件
- 世界文化遺產(chǎn)-樂山大佛課件
- 2022小學(xué)一年級數(shù)學(xué)活用從不同角度解決問題測試卷(一)含答案
- 博爾赫斯簡介課件
- 2021年山東交投礦業(yè)有限公司招聘筆試試題及答案解析
- 施工單位資料檢查內(nèi)容
- 大氣課設(shè)-酸洗廢氣凈化系統(tǒng)
- 學(xué)校校慶等大型活動安全應(yīng)急預(yù)案
- 檢測公司檢驗檢測工作控制程序
- 高血壓病例優(yōu)秀PPT課件
- 精密電主軸PPT課件
- C++課程設(shè)計設(shè)計一個排課程序
評論
0/150
提交評論