版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆北京西城3中數(shù)學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列{an}的前n項和為Sn,若2Sn=an+1﹣1(n∈N*),則首項a1為()A.1 B.2 C.3 D.42.設(shè)集合,則()A. B. C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B.C. D.4.在中,,,則()A.或 B. C. D.5.空間中可以確定一個平面的條件是()A.三個點 B.四個點 C.三角形 D.四邊形6.設(shè)為兩條不同的直線,為三個不重合平面,則下列結(jié)論正確的是()A.若,,則 B.若,則C.若,,則 D.若,,則7.設(shè)且,則下列不等式成立的是()A. B. C. D.8.設(shè)集合,,若,則的取值范圍是()A. B. C. D.9.若,則()A.0 B.-1 C.1或0 D.0或-110.在等差數(shù)列an中,若a3+A.6 B.7 C.8 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前項和為,則其通項公式__________.12.已知函數(shù),則的取值范圍是____13.三階行列式中,元素4的代數(shù)余子式的值為________.14.化簡:______.(要求將結(jié)果寫成最簡形式)15.已知,,若,則實數(shù)的值為__________.16.已知與的夾角為,,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量.(1)當(dāng)時,求的值;(2)設(shè)函數(shù),當(dāng)時,求的值域.18.如圖所示,在三棱柱中,與都為正三角形,且平面,分別是的中點.求證:(1)平面平面;(2)平面平面.19.設(shè),求函數(shù)的最小值為__________.20.在中,內(nèi)角A,B,C的對邊分別是ɑ,b,c,已知,.(1)求角C;(2)求面積的最大值.21.已知數(shù)列滿足,.(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,求使不等式<對一切恒成立的實數(shù)的范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
等比數(shù)列的公比設(shè)為,分別令,結(jié)合等比數(shù)列的定義和通項公式,解方程可得所求首項.【題目詳解】等比數(shù)列的公比設(shè)為,由,令,可得,,兩式相減可得,即,又所以.故選:A.【題目點撥】本題考查數(shù)列的遞推式的運(yùn)用,等比數(shù)列的定義和通項公式,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.2、B【解題分析】試題分析:由已知得,,故,選B.考點:集合的運(yùn)算.3、C【解題分析】
先通過三視圖找到幾何體原圖,再求幾何體的體積得解.【題目詳解】由題得該幾何體是一個邊長為4的正方體挖去一個圓錐(圓錐底面在正方體上表面上,圓錐頂部朝下),所以幾何體體積為.故選:C【題目點撥】本題主要考查三視圖還原幾何體原圖,考查組合體體積的計算,意在考查學(xué)生對這些知識的理解掌握水平.4、C【解題分析】
由正弦定理計算即可?!绢}目詳解】由題根據(jù)正弦定理可得即,解得,所以為或,又因為,所以為故選C.【題目點撥】本題考查正弦定理,屬于簡單題。5、C【解題分析】
根據(jù)公理2即可得出答案.【題目詳解】在A中,不共線的三個點能確定一個平面,共線的三個點不能確定一個平面,故A錯誤;在B中,不共線的四個點最多能確定四個平面,故B錯誤;在C中,由于三角形的三個頂點不共線,因此三角形能確定一個平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個平面,故D錯誤.【題目點撥】本題對公理2進(jìn)行了考查,確定一個平面關(guān)鍵是對過不在一條直線上的三點,有且只有一個平面的理解.6、D【解題分析】
根據(jù)空間中線線、線面、面面位置關(guān)系,逐項判斷,即可得出結(jié)果.【題目詳解】A選項,若,,則可能平行、相交或異面;故A錯;B選項,若,,則或,故B錯;C選項,若,,因為為三個不重合平面,所以或,故C錯;D選項,若,,則,故D正確;故選D【題目點撥】本主要考查命題真假的判定,熟記空間中線線、線面、面面位置關(guān)系,即可得出結(jié)果.7、A【解題分析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.8、A【解題分析】因為,,且,即,所以.故選A.9、D【解題分析】
由二倍角公式可得,即,從而分情況求解.【題目詳解】易得,或.
由得.
由,得.故選:D【題目點撥】本題考查二倍角公式的應(yīng)用以及有關(guān)的二次齊次式子求值,屬于中檔題.10、C【解題分析】
通過等差數(shù)列的性質(zhì)可得答案.【題目詳解】因為a3+a9=17【題目點撥】本題主要考查等差數(shù)列的性質(zhì),難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】分析:先根據(jù)和項與通項關(guān)系得當(dāng)時,,再檢驗,時,不滿足上述式子,所以結(jié)果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項和,∴當(dāng)時,,當(dāng)時,,經(jīng)檢驗,時,不滿足上述式子,故數(shù)列的通項公式.點睛:給出與的遞推關(guān)系求,常用思路是:一是利用轉(zhuǎn)化為的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為的遞推關(guān)系,先求出與之間的關(guān)系,再求.應(yīng)用關(guān)系式時,一定要注意分兩種情況,在求出結(jié)果后,看看這兩種情況能否整合在一起.12、【解題分析】
分類討論,去掉絕對值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進(jìn)而得到函數(shù)的取值范圍,得到答案.【題目詳解】由題意,當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時函數(shù)的取值當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【題目點撥】本題主要考查了分段函數(shù)的值域問題,其中解答中合理分類討論去掉絕對值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、6【解題分析】
利用代數(shù)余子式的定義直接求解.【題目詳解】三階行列式中,元素4的代數(shù)余子式的值為:.故答案為:6.【題目點撥】本題主要考查了三階行列式中元素的代數(shù)余子式的求法,屬于中檔題.14、【解題分析】
結(jié)合誘導(dǎo)公式化簡,再結(jié)合兩角差正弦公式分析即可【題目詳解】故答案為:【題目點撥】本題考查三角函數(shù)的化簡,誘導(dǎo)公式的使用,屬于基礎(chǔ)題15、【解題分析】
利用共線向量等價條件列等式求出實數(shù)的值.【題目詳解】,,且,,因此,,故答案為.【題目點撥】本題考查利用共線向量來求參數(shù),解題時要充分利用共線向量坐標(biāo)表示列等式求解,考查計算能力,屬于基礎(chǔ)題.16、3【解題分析】
將平方再利用數(shù)量積公式求解即可.【題目詳解】因為,故.化簡得.因為,故.故答案為:3【題目點撥】本題主要考查了模長與數(shù)量積的綜合運(yùn)用,經(jīng)常利用平方去處理.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)-7,(2)【解題分析】試題分析:(1)由向量共線得到等量關(guān)系,求出角的正切值,再利用兩角差正切公式求解:(2)先根據(jù)向量數(shù)量積,利用二倍角公式及配角公式得到三角函數(shù)關(guān)系式,再從角出發(fā)研究基本三角函數(shù)范圍:試題解析:(1),3分6分(2)8分11分,的值域為14分考點:向量平行坐標(biāo)表示,三角函數(shù)性質(zhì)18、(1)見解析.(2)見解析.【解題分析】
(1)由分別是的中點,證得,由線面平行的判定定理,可得平面,平面,再根據(jù)面面平行的判定定理,即可證得平面平面.(2)利用線面垂直的判定定理,可得平面,再利用面面垂直的判定定理,即可得到平面平面.【題目詳解】(1)在三棱柱中,因為分別是的中點,所以,根據(jù)線面平行的判定定理,可得平面,平面又,∴平面平面.(2)在三棱柱中,平面,所以,又,,所以平面,而平面,所以平面平面.【題目點撥】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.19、9【解題分析】試題分析:本題解題的關(guān)鍵在于關(guān)注分母,充分運(yùn)用發(fā)散性思維,經(jīng)過同解變形構(gòu)造基本不等式,從而求出最小值.試題解析:由得,則當(dāng)且僅當(dāng)時,上式取“=”,所以.考點:基本不等式;構(gòu)造思想和發(fā)散性思維.20、(1);(2)【解題分析】
(1)利用正弦定理邊化角可求得,由的范圍可求得結(jié)果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面積公式可求得結(jié)果.【題目詳解】(1)由正弦定理得:,即又(2)由余弦定理得:(當(dāng)且僅當(dāng)時取等號),即面積的最大值為【題目點撥】本題考查解三角形的相關(guān)知識,涉及到正弦定理邊化角的應(yīng)用、余弦定理解三角形、基本不等式求積的最大值、三角形面積公式的應(yīng)用;求解面積的最大值的關(guān)鍵是能夠在余弦定理的基礎(chǔ)上,利用基本不等式來求解兩邊之積的最大值.21、(1)見解析,;(2)【解題分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度茶藝館品牌合作全面合作協(xié)議4篇
- 綜合、專項應(yīng)急預(yù)案、現(xiàn)場處置與方案
- 二零二四醫(yī)院與學(xué)校聯(lián)辦臨床實習(xí)基地合作協(xié)議3篇
- 專業(yè)化2024波紋管買賣協(xié)議詳案版B版
- 2025年度旅游文化節(jié)攤位租賃及旅游產(chǎn)品推廣合同4篇
- 專項定向井技術(shù)支持與服務(wù)協(xié)議版B版
- 2025年跨境電商平臺產(chǎn)品代理銷售合同協(xié)議4篇
- 專業(yè)法律顧問服務(wù)協(xié)議(2024)3篇
- 專業(yè)技術(shù)員2024聘用合同
- 2025年度茶葉出口貿(mào)易代理合同8篇
- GB/T 4732.1-2024壓力容器分析設(shè)計第1部分:通用要求
- 《采礦工程英語》課件
- NB-T31045-2013風(fēng)電場運(yùn)行指標(biāo)與評價導(dǎo)則
- NB-T+10488-2021水電工程砂石加工系統(tǒng)設(shè)計規(guī)范
- 天津市和平區(qū)2023-2024學(xué)年七年級下學(xué)期6月期末歷史試題
- 微型消防站消防員培訓(xùn)內(nèi)容
- (完整版)鋼筋加工棚驗算
- 焊接工藝的過程監(jiān)測與質(zhì)量分析
- 年夜飯營養(yǎng)分析報告
- 華電行測題庫及答案2024
- 江西省萍鄉(xiāng)市2023-2024學(xué)年九年級上學(xué)期期末數(shù)學(xué)試題(含答案)
評論
0/150
提交評論