版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市同濟大學附屬七一中學2024屆數(shù)學高一第二學期期末調研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù),若方程恰有三個不同的解,記為,則的取值范圍是()A. B. C. D.2.已知直線是函數(shù)的一條對稱軸,則的一個單調遞減區(qū)間是()A. B. C. D.3.正四棱柱的高為3cm,體對角線長為cm,則正四棱柱的側面積為()A.10 B.24 C.36 D.404.已知等差數(shù)列中,若,則()A.-21 B.-15 C.-12 D.-175.用輾轉相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.66.已知A(-3,8),B(2,2),在x軸上有一點M,使得|MA|+|MB|最短,則點M的坐標是()A.(-1,0) B.(1,0) C. D.7.過點的圓的切線方程是()A. B.或C.或 D.或8.已知數(shù)列是等比數(shù)列,若,且公比,則實數(shù)的取值范圍是()A. B. C. D.9.采用系統(tǒng)抽樣方法從人中抽取人做問卷調查,為此將他們隨機編號為,,,,分組后某組抽到的號碼為1.抽到的人中,編號落入區(qū)間的人數(shù)為()A.10 B. C.12 D.1310.已知a、b、c分別是△ABC的內角A、B、C的對邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形二、填空題:本大題共6小題,每小題5分,共30分。11.若、是方程的兩根,則__________.12.圓上的點到直線的距離的最小值是______.13.某中學初中部共有名老師,高中部共有名教師,其性別比例如圖所示,則該校女教師的人數(shù)為__________.14.若是三角形的內角,且,則等于_____________.15.直線過點且傾斜角為,直線過點且與垂直,則與的交點坐標為____16.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在銳角中,角所對的邊分別為,已知,,.(1)求角的大??;(2)求的面積.18.如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內接矩形,使點在上,點在上,設矩形的面積為,(1)按下列要求寫出函數(shù)的關系式:①設,將表示成的函數(shù)關系式;②設,將表示成的函數(shù)關系式,(2)請你選用(1)中的一個函數(shù)關系式,求出的最大值.19.已知數(shù)列為等差數(shù)列,且滿足,,數(shù)列的前項和為,且,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若對任意的,不等式恒成立,求實數(shù)的取值范圍.20.已知.(1)求的值;(2)求的值.21.寫出集合的所有子集.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
由方程恰有三個不同的解,作出的圖象,確定,的取值范圍,得到的對稱性,利用數(shù)形結合進行求解即可.【題目詳解】設
作出函數(shù)的圖象如圖:由
則當
時
,,
即函數(shù)的一條對稱軸為
,要使方程恰有三個不同的解,則
,
此時
,
關于
對稱,則
當
,即
,則
則
的取值范圍是,選D.【題目點撥】本題主要考查了方程與函數(shù),數(shù)學結合是解決本題的關鍵,數(shù)學結合也是數(shù)學中比較重要的一種思想方法.2、B【解題分析】
利用周期公式計算出周期,根據(jù)對稱軸對應的是最值,然后分析單調減區(qū)間.【題目詳解】因為,若取到最大值,則,即,此時處最接近的單調減區(qū)間是:即,故B符合;若取到最小值,則,即,此時處最接近的單調減區(qū)間是:即,此時無符合答案;故選:B.【題目點撥】對于正弦型函數(shù),對稱軸對應的是函數(shù)的最值,這一點值得注意.3、B【解題分析】
設正四棱柱,設底面邊長為,由正四棱柱體對角線的平方等于從同一頂點出發(fā)的三條棱的平方和,可得關于的方程.【題目詳解】如圖,正四棱柱,設底面邊長為,則,解得:,所以正四棱柱的側面積.【題目點撥】本題考查正棱柱的概念,即底面為正方形且側棱垂直于底面的幾何體,考查幾何體的側面積計算.4、A【解題分析】
根據(jù)等差數(shù)列的前n項和公式得:,故選A.5、B【解題分析】
根據(jù)輾轉相除法計算最大公約數(shù).【題目詳解】因為所以最大公約數(shù)是8,選B.【題目點撥】本題考查輾轉相除法,考查基本求解能力.6、B【解題分析】
由集合性質可知,求出點A關于x軸的對稱點,此對稱點與點B確定的直線與x軸的交點,即為點M.【題目詳解】點A關于x軸的對稱點C的坐標為:,由兩點可得直線BC方程為:,可求得與y軸的交點為.故選B.【題目點撥】本題考查最短路徑問題,輔助作圖更易理解,注意求直線方程時要熟練使用最簡便的方式,注意計算的準確性.7、D【解題分析】
先由題意得到圓的圓心坐標,與半徑,設所求直線方程為,根據(jù)直線與圓相切,結合點到直線距離公式,即可求出結果.【題目詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【題目點撥】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結合點到直線距離公式即可求解,屬于??碱}型.8、C【解題分析】
由可得,結合可得結果.【題目詳解】,,,,,,故選C.【題目點撥】本題主要考查等比數(shù)列的通項公式,意在考查對基礎知識的掌握與應用,屬于基礎題.9、C【解題分析】
由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項公式為an=30n﹣19,由401≤30n﹣21≤755,求得正整數(shù)n的個數(shù),即可得出結論.【題目詳解】∵960÷32=30,∴每組30人,∴由題意可得抽到的號碼構成以30為公差的等差數(shù)列,又某組抽到的號碼為1,可知第一組抽到的號碼為11,∴由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,∴等差數(shù)列的通項公式為an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n為正整數(shù)可得14≤n≤25,∴做問卷C的人數(shù)為25﹣14+1=12,故選C.【題目點撥】本題主要考查等差數(shù)列的通項公式,系統(tǒng)抽樣的定義和方法,根據(jù)系統(tǒng)抽樣的定義轉化為等差數(shù)列是解決本題的關鍵,比較基礎.10、A【解題分析】
將原式進行變形,再利用內角和定理轉化,最后可得角B的范圍,可得三角形形狀.【題目詳解】因為在三角形中,變形為由內角和定理可得化簡可得:所以所以三角形為鈍角三角形故選A【題目點撥】本題考查了解三角形,主要是公式的變形是解題的關鍵,屬于較為基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由題意利用韋達定理求得、的值,再利用兩角差的正切公式,求得要求式子的值.【題目詳解】解:、是方程的兩根,,,,或,,則,故答案為:.【題目點撥】本題主要考查韋達定理,兩角差的正切公式,屬于基礎題.12、【解題分析】
求圓心到直線的距離,用距離減去半徑即可最小值.【題目詳解】圓C的圓心為,半徑為,圓心C到直線的距離為:,所以最小值為:故答案為:【題目點撥】本題考查圓上的點到直線的距離的最值,若圓心距為d,圓的半徑為r且圓與直線相離,則圓上的點到直線距離的最大值為d+r,最小值為d-r.13、【解題分析】
由初中部、高中部男女比例的餅圖,初中部女老師占70%,高中部女老師占40%,分別算出女老師人數(shù),再相加.【題目詳解】初中部女老師占70%,高中部女老師占40%,該校女教師的人數(shù)為.【題目點撥】考查統(tǒng)計中讀圖能力,從圖中提取基本信息的基本能力.14、【解題分析】∵是三角形的內角,且,∴故答案為點睛:本題是一道易錯題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.15、【解題分析】
通過題意,求出兩直線方程,聯(lián)立方程即可得到交點坐標.【題目詳解】根據(jù)題意可知,因此直線為:,由于直線與垂直,故,所以,所以直線為:,聯(lián)立兩直線方程,可得交點.【題目點撥】本題主要考查直線方程的相關計算,難度不大.16、①③④⑤【解題分析】
設出幾何體的邊長,根據(jù)正六邊形的性質,線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關知識,對五個結論逐一分析,由此得出正確結論的序號.【題目詳解】設正六邊形長為,則.根據(jù)正六邊形的幾何性質可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【題目點撥】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】試題分析:(1)先由正弦定理求得與的關系,然后結合已知等式求得的值,從而求得的值;(2)先由余弦定理求得的值,從而由的范圍取舍的值,進而由面積公式求解.試題解析:(1)在中,由正弦定理,得,即.又因為,所以.因為為銳角三角形,所以.(2)在中,由余弦定理,得,即.解得或.當時,因為,所以角為鈍角,不符合題意,舍去.當時,因為,又,所以為銳角三角形,符合題意.所以的面積.考點:1、正余弦定理;2、三角形面積公式.18、(Ⅰ),;(Ⅱ).【解題分析】試題分析:(1)①通過求出矩形的邊長,求出面積的表達式;②利用三角函數(shù)的關系,求出矩形的鄰邊,求出面積的表達式;(2)利用(1)②的表達式,化為一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值.試題解析:(1)①因為,所以,所以,.②當時,,則,又,所以,所以,().(2)由②得,,當時,取得最大值為.考點:1.三角函數(shù)中的恒等變換;2.兩角和與差的正弦函數(shù).【方法點睛】本題主要考查的是函數(shù)解析式的求法,三角函數(shù)的最值的確定,三角函數(shù)公式的靈活運用,計算能力,屬于中檔題,此題是課本題目的延伸,如果(2)選擇(1)①中的解析式,需要用到導數(shù)求解,麻煩,不是命題者的本意,因此正確的選擇是選擇(1)②中的解析式,化成一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值,此類題目選擇正確的解析式是求解容易與否的關鍵.19、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)數(shù)列的通項公式,利用,可求公差,然后可求;的通項公式可以利用退位相減法求解;(Ⅱ)求出代入,利用分離參數(shù)法可求實數(shù)的取值范圍.【題目詳解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1為首項,3為公比的等比數(shù)列,∴.(Ⅱ),∴對恒成立,即對恒成立,令,,當時,,當時,,∴,故,即的取值范圍為.【題目點撥】本題主要考查數(shù)列通項公式的求解和參數(shù)范圍的確定,熟練掌握公式是求解關鍵,側重考查數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年北師大版高三歷史上冊階段測試試卷含答案
- 2025年滬教新版選修3物理上冊階段測試試卷含答案
- 2025年粵人版高一數(shù)學下冊階段測試試卷
- 2025年北師大版九年級地理下冊月考試卷含答案
- 2025年湘教版選擇性必修1歷史下冊月考試卷含答案
- 2025年浙教新版必修三英語上冊階段測試試卷
- 公共文化服務理論與實務知到智慧樹章節(jié)測試課后答案2024年秋四川藝術職業(yè)學院
- 2025年度美容院美容產品包裝設計與生產合同4篇
- 二零二五年度農業(yè)休閑觀光園開發(fā)合同4篇
- 二零二五年度綠色生態(tài)農用地流轉合同4篇
- 2024年蘇州工業(yè)園區(qū)服務外包職業(yè)學院高職單招職業(yè)適應性測試歷年參考題庫含答案解析
- 人教版初中語文2022-2024年三年中考真題匯編-學生版-專題08 古詩詞名篇名句默寫
- 2024-2025學年人教版(2024)七年級(上)數(shù)學寒假作業(yè)(十二)
- 《精密板料矯平機 第2部分:技術規(guī)范》
- 2024年高考全國甲卷英語試卷(含答案)
- 2024光伏發(fā)電工程交流匯流箱技術規(guī)范
- 旅游活動碳排放管理評價指標體系構建及實證研究
- 2022年全國職業(yè)院校技能大賽-電氣安裝與維修賽項規(guī)程
- 小學德育養(yǎng)成教育工作分層實施方案
- 2024年湖南高速鐵路職業(yè)技術學院單招職業(yè)技能測試題庫附答案
- 黑枸杞生物原液應用及產業(yè)化項目可行性研究報告
評論
0/150
提交評論