版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省定遠(yuǎn)二中2024屆高一數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△中,已知,,,則△的面積等于()A.6 B.12 C. D.2.角α的終邊上有一點P(a,|a|),a∈R且a≠0,則sinα值為()A. B. C.1 D.或3.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2004.函數(shù)的圖象是()A. B. C. D.5.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.6.有3個興趣小組,甲、乙兩位同學(xué)各自參加其中一個小組,每位同學(xué)參加各個小組的可能性相同,則這兩位同學(xué)參加同一個興趣小組的概率為A. B. C. D.7.若函數(shù)局部圖象如圖所示,則函數(shù)的解析式為A. B.C. D.8.無窮數(shù)列1,3,6,10,…的通項公式為()A. B.C. D.9.向量,,若,則實數(shù)的值為A. B. C. D.10.在各項均為正數(shù)的等比數(shù)列中,公比,若,,,數(shù)列的前項和為,則取最大值時,的值為()A. B. C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對的邊為,若,且的外接圓半徑為,則________.12.設(shè)當(dāng)時,函數(shù)取得最大值,則______.13.在梯形中,,,設(shè),,則__________(用向量表示).14.不等式的解集為_________________;15.在中,角A,B,C所對的邊分別為a,b,c,若的面積為,則的最大值為________.16.在區(qū)間上,與角終邊相同的角為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱柱中,側(cè)棱底面,,,,,且點和分別為和的中點.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點,若直線和平面所成角的正弦值為,求線段的長.18.已知,函數(shù),.(1)若在上單調(diào)遞增,求正數(shù)的最大值;(2)若函數(shù)在內(nèi)恰有一個零點,求的取值范圍.19.如圖,四棱錐P-ABCD中,底面ABCD,,,,M為線段AD上一點,,N為PC的中點.(1)證明:平面PAB;(2)求直線AN與平面PMN所成角的余弦值.20.已知函數(shù).(1)求函數(shù)的定義域;(2)當(dāng)為何值時,等式成立?21.已知函數(shù)(其中)的圖象如圖所示:(1)求函數(shù)的解析式及其對稱軸的方程;(2)當(dāng)時,方程有兩個不等的實根,求實數(shù)的取值范圍,并求此時的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
通過A角的面積公式,代入數(shù)據(jù)易得面積.【題目詳解】故選C【題目點撥】此題考查三角形的面積公式,代入數(shù)據(jù)即可,屬于簡單題目.2、B【解題分析】
根據(jù)三角函數(shù)的定義,求出OP,即可求出的值.【題目詳解】因為,所以,故選B.【題目點撥】本題主要考查三角函數(shù)的定義應(yīng)用.3、C【解題分析】
由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進(jìn)而求出【題目詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【題目點撥】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.4、D【解題分析】
求出分段函數(shù)的解析式,由此確定函數(shù)圖象.【題目詳解】由于,根據(jù)函數(shù)解析式可知,D選項符合.故選:D【題目點撥】本小題主要考查分段函數(shù)圖象的判斷,屬于基礎(chǔ)題.5、A【解題分析】設(shè)甲到達(dá)時刻為,乙到達(dá)時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.6、A【解題分析】每個同學(xué)參加的情形都有3種,故兩個同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A7、D【解題分析】
由的部分圖象可求得A,T,從而可得,再由,結(jié)合的范圍可求得,從而可得答案.【題目詳解】,;又由圖象可得:,可得:,,,.,,又,當(dāng)時,可得:,此時,可得:故選D.【題目點撥】本題考查由的部分圖象確定函數(shù)解析式,常用五點法求得的值,屬于中檔題.8、C【解題分析】試題分析:由累加法得:,分別相加得,,故選C.考點:數(shù)列的通項公式.9、C【解題分析】
利用向量平行的坐標(biāo)表示,即可求出.【題目詳解】向量,,,即解得.故選.【題目點撥】本題主要考查向量平行的坐標(biāo)表示.10、D【解題分析】
利用等比數(shù)列的性質(zhì)求出、的值,可求出和的值,利用等比數(shù)列的通項公式可求出,由此得出,并求出數(shù)列的前項和,然后求出,利用二次函數(shù)的性質(zhì)求出當(dāng)取最大值時對應(yīng)的值.【題目詳解】由題意可知,由等比數(shù)列的性質(zhì)可得,解得,所以,解得,,,則數(shù)列為等差數(shù)列,,,,因此,當(dāng)或時,取最大值,故選:D.【題目點撥】本題考查等比數(shù)列的性質(zhì),同時也考查了等差數(shù)列求和以及等差數(shù)列前項和的最值,在求解時將問題轉(zhuǎn)化為二次函數(shù)的最值求解,考查方程與函數(shù)思想的應(yīng)用,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、或.【解題分析】
利用正弦定理求出的值,結(jié)合角的取值范圍得出角的值.【題目詳解】由正弦定理可得,所以,,,或,故答案為或.【題目點撥】本題考查正弦定理的應(yīng)用,在利用正弦值求角時,除了找出銳角還要注意相應(yīng)的補角是否滿足題意,考查計算能力,屬于基礎(chǔ)題.12、;【解題分析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當(dāng)x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.13、【解題分析】
根據(jù)向量減法運算得結(jié)果.【題目詳解】利用向量的三角形法則,可得,,又,,則,.故答案為.【題目點撥】本題考查向量表示,考查基本化解能力14、【解題分析】
根據(jù)絕對值定義去掉絕對值符號后再解不等式.【題目詳解】時,原不等式可化為,,∴;時,原不等式可化為,,∴.綜上原不等式的解為.故答案為.【題目點撥】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.15、【解題分析】
先求得的值,再利用兩角和差的三角公式和正弦函數(shù)的最大值,求得的最大值.【題目詳解】中,若的面積為,,.,當(dāng)且僅當(dāng)時,取等號,故的最大值為,故答案為:.【題目點撥】本題主要兩角和差的三角公式的應(yīng)用和正弦函數(shù)的最大值,屬于基礎(chǔ)題.16、【解題分析】
根據(jù)與終邊相同的角可以表示為這一方法,即可得出結(jié)論.【題目詳解】因為,所以與角終邊相同的角為.【題目點撥】本題考查終邊相同的角的表示方法,考查對基本概念以及基本知識的熟練程度,考查了數(shù)學(xué)運算能力,是簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3)【解題分析】
如圖,以為原點建立空間直角坐標(biāo)系,依題意可得,又因為分別為和的中點,得.(Ⅰ)證明:依題意,可得為平面的一個法向量,,由此可得,,又因為直線平面,所以平面(Ⅱ),設(shè)為平面的法向量,則,即,不妨設(shè),可得,設(shè)為平面的一個法向量,則,又,得,不妨設(shè),可得因此有,于是,所以二面角的正弦值為.(Ⅲ)依題意,可設(shè),其中,則,從而,又為平面的一個法向量,由已知得,整理得,又因為,解得,所以線段的長為.考點:直線和平面平行和垂直的判定與性質(zhì),二面角、直線與平面所成的角,空間向量的應(yīng)用.18、(1)(2)【解題分析】
(1)求出的單調(diào)遞增區(qū)間,令,得,可知區(qū)間,即可求出正數(shù)的最大值;(2)令,當(dāng)時,,可將問題轉(zhuǎn)化為在的零點問題,分類討論即可求出答案.【題目詳解】解:(1)由,得,.因為在上單調(diào)遞增,令,得時單調(diào)遞增,所以解得,可得正數(shù)的最大值為.(2),設(shè),當(dāng)時,.它的圖形如圖所示.又,則,,令,則函數(shù)在內(nèi)恰有一個零點,可知在內(nèi)最多一個零點.①當(dāng)0為的零點時,顯然不成立;②當(dāng)為的零點時,由,得,把代入中,得,解得,,不符合題意.③當(dāng)零點在區(qū)間時,若,得,此時零點為1,即,由的圖象可知不符合題意;若,即,設(shè)的兩根分別為,,由,且拋物線的對稱軸為,則兩根同時為正,要使在內(nèi)恰有一個零點,則一個根在內(nèi),另一個根在內(nèi),所以解得.綜上,的取值范圍為.【題目點撥】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了函數(shù)的零點,考查了分類討論的數(shù)學(xué)思想,考查了學(xué)生的推理能力與計算求解能力,屬于難題.19、(1)證明見解析;(2)【解題分析】
(1)如圖所示,為中點,連接,證明為平行四邊形得到答案.(2)分別以為軸建立直角坐標(biāo)系,平面的法向量為,計算向量夾角得到答案.【題目詳解】(1)如圖所示,為中點,連接.為中點,N為PC的中點,故,,,故,且,故為平行四邊形.故,平面,故平面PAB.(2)中點為,,故,故,底面ABCD,故,.分別以為軸建立直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,取得到,故,故直線AN與平面PMN所成角的余弦值為.【題目點撥】本題考查了線面平行,線面夾角,意在考查學(xué)生的空間想象能力和計算能力.20、(1);(2).【解題分析】
(1)根據(jù)對數(shù)的真數(shù)大于零,得出,解出該不等式即可得出函數(shù)的定義域;(2)根據(jù)對數(shù)的運算性質(zhì)可得出關(guān)于的方程,解出即可.【題目詳解】(1)由,得,所以,函數(shù)定義域為;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合題意,所以,當(dāng)時,等式成立.【題目點撥】本題考查了對數(shù)運算以及簡單的對數(shù)方程的求解,解題時不要忽略真數(shù)大于零這一條件的限制,考查運算求解能力,屬于基礎(chǔ)題.21、(1),;(2),.【解題分析】
(1)根據(jù)圖像得A=2,利用,求ω值,再利用時取到最大值可求φ,從而得到函數(shù)解析式,進(jìn)而求得對稱軸方程;(2)由得,方程f(x)=2a﹣3有兩個不等實根轉(zhuǎn)為f(x)的圖象與直線y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣場景觀施工合同
- 【初中生物】從種到界-2024-2025學(xué)年七年級生物上冊同步教學(xué)課件(人教版2024)
- 2024租地合同協(xié)議書范本農(nóng)村租地協(xié)議書范本
- 2024年度「新能源領(lǐng)域研究開發(fā)」合同
- 2024年冷庫建造施工合同模板
- 2024年度銷售合同:醫(yī)療設(shè)備供應(yīng)
- 2024年店鋪裝修合同范本
- 2024年度」品牌代言協(xié)議明星效應(yīng)助力品牌
- 2024年度智能制造生產(chǎn)線改造合同
- 認(rèn)識梯形課件教學(xué)課件
- 填埋場工藝流程設(shè)計
- 體量與力量雕塑的美感課件高中美術(shù)人美版美術(shù)鑒賞
- 水災(zāi)期間的食品安全措施
- 上下班安全交通培訓(xùn)
- 股骨頭置換術(shù)后護(hù)理查房
- 《招商招租方案》課件
- 第六單元中國特色社會主義生態(tài)文明建設(shè)及結(jié)語練習(xí)-2023-2024學(xué)年中職高教版(2023)中國特色社會主義
- 結(jié)算周期與付款方式
- 【S鋼材民營企業(yè)經(jīng)營管理探究17000字(論文)】
- 林木種質(zhì)資源調(diào)查表(新表)
- 蔬菜出口基地備案管理課件
評論
0/150
提交評論