




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆濟南市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,,則△ABC為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形2.函數(shù)的定義域為()A. B. C. D.3.設(shè)等差數(shù)列,則等于()A.120 B.60 C.54 D.1084.已知函數(shù)在區(qū)間上是增函數(shù),且在區(qū)間上恰好取得一次最大值為2,則的取值范圍是()A. B. C. D.5.已知,其中,若函數(shù)在區(qū)間內(nèi)有零點,則實數(shù)的取值可能是()A. B. C. D.6.若函數(shù)則()A. B. C. D.7.(2018年天津卷文)設(shè)變量x,y滿足約束條件則目標函數(shù)的最大值為A.6 B.19 C.21 D.458.已知則()A. B. C. D.9.已知是偶函數(shù),且時.若時,的最大值為,最小值為,則()A.2 B.1 C.3 D.10.已知,,點在內(nèi),且,設(shè),則等于()A. B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),則的值是____.12.體積為8的正方體的頂點都在同一球面上,則該球面的表面積為__________.13.已知P1(x1,y1),P2(x2,y2)是以原點O為圓心的單位圓上的兩點,∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.14.將邊長為1的正方形(及其內(nèi)部)繞旋轉(zhuǎn)一周形成圓柱,點?分別是圓和圓上的點,長為,長為,且與在平面的同側(cè),則與所成角的大小為______.15.等差數(shù)列滿足,則其公差為__________.16.對任意的θ∈0,π2,不等式1三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):單價(元)1819202122銷量(冊)6156504845(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?附:,,,.18.如圖,在△ABC中,已知AB=4,AC=6,點E為AB的中點,點D、F在邊BC、AC上,且,,EF交AD于點P.(Ⅰ)若∠BAC=,求與所成角的余弦值;(Ⅱ)求的值.19.已知圓:.(1)過的直線與圓:交于,兩點,若,求直線的方程;(2)過的直線與圓:交于,兩點,直接寫出面積取值范圍;(3)已知,,圓上是否存在點,使得,請說明理由.20.已知函數(shù)(其中,)的最小正周期為,且圖象經(jīng)過點(1)求函數(shù)的解析式:(2)求函數(shù)的單調(diào)遞增區(qū)間.21.從兩個班中各隨機抽取10名學(xué)生,他們的數(shù)學(xué)成績?nèi)缦?,通過作莖葉圖,分析哪個班學(xué)生的數(shù)學(xué)學(xué)習(xí)情況更好一些.甲班76748296667678725268乙班86846276789282748885
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
直接利用正弦定理余弦定理化簡得到,即得解.【題目詳解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案為:C【題目點撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的掌握水平和分析推理水平.2、A【解題分析】
根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【題目詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【題目點撥】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)題.3、C【解題分析】
題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決?!绢}目詳解】,選C.【題目點撥】題干中只有一個等式,要求前9項的和,可利用等差數(shù)列的性質(zhì)解決。也可將等式全部化為的表達式,整體代換計算出4、D【解題分析】
化簡函數(shù)為正弦型函數(shù),根據(jù)題意,利用正弦函數(shù)的圖象與性質(zhì)求得的取值范圍.【題目詳解】解:函數(shù)則函數(shù)在上是含原點的遞增區(qū)間;又因為函數(shù)在區(qū)間上是單調(diào)遞增,則,得不等式組又因為,所以解得.又因為函數(shù)在區(qū)間上恰好取得一次最大值為2,可得,所以,綜上所述,可得.故選:D.【題目點撥】本題主要考查了正弦函數(shù)的圖像和性質(zhì)應(yīng)用問題,也考查了三角函數(shù)的靈活應(yīng)用,屬于中檔題.5、D【解題分析】
求出函數(shù),令,,根據(jù)不等式求解,即可得到可能的取值.【題目詳解】由題:,其中,令,,若函數(shù)在區(qū)間內(nèi)有零點,則有解,解得:當當當結(jié)合四個選項可以分析,實數(shù)的取值可能是.故選:D【題目點撥】此題考查根據(jù)函數(shù)零點求參數(shù)的取值范圍,需要熟練掌握三角函數(shù)的圖像性質(zhì),求出函數(shù)零點再討論其所在區(qū)間列不等式求解.6、B【解題分析】
首先根據(jù)題意得到,再計算即可.【題目詳解】……,.故選:B【題目點撥】本題主要考查分段函數(shù)值的求法,同時考查了指數(shù)冪的運算,屬于簡單題.7、C【解題分析】分析:首先畫出可行域,然后結(jié)合目標目標函數(shù)的幾何意義確定函數(shù)取得最大值的點,最后求解最大值即可.詳解:繪制不等式組表示的平面區(qū)域如圖所示,結(jié)合目標函數(shù)的幾何意義可知目標函數(shù)在點A處取得最大值,聯(lián)立直線方程:,可得點A的坐標為:,據(jù)此可知目標函數(shù)的最大值為:.本題選擇C選項.點睛:求線性目標函數(shù)z=ax+by(ab≠0)的最值,當b>0時,直線過可行域且在y軸上截距最大時,z值最大,在y軸截距最小時,z值最小;當b<0時,直線過可行域且在y軸上截距最大時,z值最小,在y軸上截距最小時,z值最大.8、B【解題分析】
根據(jù)條件式,判斷出,,且.由不等式性質(zhì)、基本不等式性質(zhì)或特殊值即可判斷選項.【題目詳解】因為所以可得,,且對于A,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以A錯誤;對于B,由基本不等式可知,即由于,則,所以B正確;對于C,由條件可得,所以C錯誤;對于D,當時滿足條件,但,所以D錯誤.綜上可知,B為正確選項故選:B【題目點撥】本題考查了不等式性質(zhì)的綜合應(yīng)用,根據(jù)基本不等式求最值,屬于基礎(chǔ)題.9、B【解題分析】
根據(jù)函數(shù)的對稱性得到原題轉(zhuǎn)化為直接求的最大和最小值即可.【題目詳解】因為函數(shù)是偶函數(shù),函數(shù)圖像關(guān)于y軸對稱,故得到時,的最大值和最小值,與時的最大值和最小值是相同的,故直接求的最大和最小值即可;根據(jù)對勾函數(shù)的單調(diào)性得到函數(shù)的最小值為,,故最大值為,此時故答案為:B.【題目點撥】這個題目考查了函數(shù)的奇偶性和單調(diào)性的應(yīng)用,屬于基礎(chǔ)題。對于函數(shù)的奇偶性,主要是體現(xiàn)函數(shù)的對稱性,這樣可以根據(jù)對稱性得到函數(shù)在對稱區(qū)間上的函數(shù)值的關(guān)系,使得問題簡化.10、B【解題分析】
先根據(jù),可得,又因為,,所以可得:在軸方向上的分量為,在軸方向上的分量為,又根據(jù),可得答案.【題目詳解】,,
,,
在軸方向上的分量為,
在軸方向上的分量為,
,
,,
兩式相比可得:.故選B.【題目點撥】.向量的坐標運算主要是利用加、減、數(shù)乘運算法則進行的.若已知有向線段兩端點的坐標,則應(yīng)先求出向量的坐標,解題過程中要注意方程思想的運用及運算法則的正確使用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)二倍角公式得出,再根據(jù)誘導(dǎo)公式即可得解.【題目詳解】解:由題意知:故,即.故答案為.【題目點撥】本題考查了二倍角公式和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.12、【解題分析】正方體體積為8,可知其邊長為2,正方體的體對角線為=2,即為球的直徑,所以半徑為,所以球的表面積為=12π.故答案為:12π.點睛:設(shè)幾何體底面外接圓半徑為,常見的圖形有正三角形,直角三角形,矩形,它們的外心可用其幾何性質(zhì)求;而其它不規(guī)則圖形的外心,可利用正弦定理來求.若長方體長寬高分別為則其體對角線長為;長方體的外接球球心是其體對角線中點.找?guī)缀误w外接球球心的一般方法:過幾何體各個面的外心分別做這個面的垂線,交點即為球心.三棱錐三條側(cè)棱兩兩垂直,且棱長分別為,則其外接球半徑公式為:.13、-【解題分析】
先利用平面向量數(shù)量積的定義和坐標運算得到,再利用兩角和的正弦公式和平方關(guān)系進行求解.【題目詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【題目點撥】本題主要考查平面向量的數(shù)量積定義和坐標運算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運算能力,屬于中檔題.14、【解題分析】
畫出幾何體示意圖,將平移至于直線相交,在三角形中求解角度.【題目詳解】根據(jù)題意,過B點作BH//交弧于點H,作圖如下:因為BH//,故即為所求異面直線的夾角,在中,,在中,因為,故該三角形為等邊三角形,即:,在中,,,且母線BH垂直于底面,故:,又異面直線夾角范圍為,故,故答案為:.【題目點撥】本題考查異面直線的夾角求解,一般解決方法為平移至直線相交,在三角形中求角.15、【解題分析】
首先根據(jù)等差數(shù)列的性質(zhì)得到,再根據(jù)即可得到公差的值.【題目詳解】,解得.,所以.故答案為:【題目點撥】本題主要考查等差數(shù)列的性質(zhì),熟記公式為解題的關(guān)鍵,屬于簡單題.16、-4,5【解題分析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當單價應(yīng)定為22.5元時,可獲得最大利潤【解題分析】
(l)先計算的平均值,再代入公式計算得到(2)計算利潤為:計算最大值.【題目詳解】解:(1),,,所以對的回歸直線方程為:.(2)設(shè)獲得的利潤為,,因為二次函數(shù)的開口向下,所以當時,取最大值,所以當單價應(yīng)定為22.5元時,可獲得最大利潤.【題目點撥】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計算能力.18、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)以AC所在直線為x軸,過B且垂直于AC的直線于AC的直線為y軸建系,得到,,,,再由向量數(shù)量積的坐標表示,即可得出結(jié)果;(Ⅱ)先由A、P、D三點共線,得到,再由平面向量的基本定理,列出方程組,即可求出結(jié)果.【題目詳解】(Ⅰ)以AC所在直線為x軸,過B且垂直于AC的直線于AC的直線為y軸建系如圖,則,,,,∴,∴(Ⅱ)∵A、P、D三點共線,可設(shè)同理,可設(shè)由平面向量基本定理可得,解得∴,.【題目點撥】本題主要考查平面向量的夾角運算,以及平面向量的應(yīng)用,熟記向量的數(shù)量積運算,以及平面向量基本定理即可,屬于常考題型.19、(1)或;(2);(3)存在,理由見解析【解題分析】
求得圓的圓心和半徑.(1)設(shè)出直線的方程,利用弦長、勾股定理和點到直線距離列方程,解方程求得直線的斜率,進而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關(guān)系,判斷出點存在.【題目詳解】圓心為,半徑為.(1)直線有斜率,設(shè):,圓心到直線的距離為,∵,則由,得,直線的方程為或(2)依題意可知,三角形的面積為,由于,所以,所以.(3)設(shè)三角形的外接圓圓心為(),半徑為,由正弦定理得,,所以,所以圓的圓心為,所以圓的方程為,圓與圓滿足圓心距:,∴圓與圓相交于兩點,圓上存在兩個這樣的點,滿足題意.【題目點撥】本小題主要考查直線和圓的位置關(guān)系,考查圓和圓的位置關(guān)系,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20、(1);(2),.【解題分析】
(1)根據(jù)最小正周期可求得;代入點,結(jié)合的范圍可求得,從而得到函數(shù)解析式;(2)令,解出的范圍即為所求的單調(diào)遞增區(qū)間.【題目詳解】(1)最小正周期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《收玉米》(教案)2024-2025學(xué)年數(shù)學(xué)一年級下冊
- 2025年股權(quán)投資協(xié)議業(yè)績對賭
- 2025年收購公司合同模板
- 三年級上冊數(shù)學(xué)教案-第3單元 長方形和正方形 1 長方形和正方形 第1課時(蘇教版)
- 2025年美發(fā)店合伙經(jīng)營合同
- 2025年公司銷售員合同模板
- (高清版)DB45∕T 560-2021 甘蔗中耕施肥培土機作業(yè)質(zhì)量
- Unit 2 An Accident Lesson 2 Let's practice(教學(xué)設(shè)計)-2024-2025學(xué)年北師大版(三起)英語六年級上冊
- 統(tǒng)編版四年級上冊語文第五單元習(xí)作 《生活萬花筒》公開課一等獎創(chuàng)新教學(xué)設(shè)計
- 期中重難點檢測卷(試題)-小學(xué)數(shù)學(xué)三年級上冊人教版(含解析)
- 2025高考語文文言文閱讀復(fù)習(xí):高頻實詞分類匯編
- 綿陽市三臺縣鄉(xiāng)鎮(zhèn)地圖矢量可編輯課件行政區(qū)劃邊界高清(四川省)
- 爭做“四有好老師”-當好“四個引路人”
- 術(shù)語翻譯與本地化
- 2024年全國高考甲卷語文真題試卷含答案
- AQ/T 1089-2020 煤礦加固煤巖體用高分子材料(正式版)
- 幼兒園故事繪本《賣火柴的小女孩兒》課件
- DB32-T 4752-2024 一體化污水處理設(shè)備通.用技術(shù)要求
- 妊娠期高血壓疾病試題
- 醫(yī)院多重耐藥菌感染管理規(guī)范
- 《公平競爭審查條例》微課
評論
0/150
提交評論