北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第1頁
北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第2頁
北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第3頁
北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第4頁
北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市西城區(qū)第三十一中學2024屆數(shù)學高一第二學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.同時拋擲兩個骰子,則向上的點數(shù)之和是的概率是()A. B. C. D.2.設,則下列不等式中正確的是()A. B.C. D.3.古代數(shù)學著作《九章算術》有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”意思是:“一女子善于織布,每天織布都是前一天的2倍,已知她5天共織布5尺,問這女子每天分別織布多少?”根據(jù)上題的已知條件,若要使織布的總尺數(shù)不少于30,該女子所需的天數(shù)至少為()A.7 B.8 C.9 D.104.已知a,b是正實數(shù),且,則的最小值為()A. B. C. D.5.的內角的對邊分別為,面積為,若,則外接圓的半徑為()A. B. C. D.6.已知,且,則()A. B. C. D.7.得到函數(shù)的圖象,只需將的圖象()A.向左移動 B.向右移動 C.向左移動 D.向右移動8.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有點的()A.橫坐標縮短到原來的倍(縱坐標不變),再將所得的圖像向左平移.B.橫坐標縮短到原來的倍(縱坐標不變),再將所得的圖像向左平移.C.橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖像向左平移.D.橫坐標縮短到原來的倍(縱坐標不變),再將所得的圖像向右平移.9.從裝有2個紅球和2個白球的口袋內任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”10.已知函數(shù),其中為整數(shù),若在上有兩個不相等的零點,則的最大值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某中學從甲乙丙3人中選1人參加全市中學男子1500米比賽,現(xiàn)將他們最近集訓中的10次成績(單位:秒)的平均數(shù)與方差制成如下的表格:甲乙丙平均數(shù)250240240方差151520根據(jù)表中數(shù)據(jù),該中學應選__________參加比賽.12.如圖,四棱錐中,所有棱長均為2,是底面正方形中心,為中點,則直線與直線所成角的余弦值為____________.13.___________.14.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.15.設,其中,則的值為________.16.在等差數(shù)列中,若,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在四棱錐P-ABCD中,,,,平面底面ABCD,E和F分別是CD和PC的中點.求證:(1)平面BEF;(2)平面平面PCD.18.在等比數(shù)列中,,.(1)求的通項公式;(2)若,求數(shù)列的前項和.19.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.20.如圖,四棱錐中,底面,,,點在線段上,且.(1)求證:平面;(2)若,,,求四棱錐的體積;21.已知銳角三個內角、、的對邊分別是,且.(1)求A的大?。唬?)若,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

由題意可知,基本事件總數(shù)為,然后列舉出事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計算出所求事件的概率.【題目詳解】同時拋擲兩個骰子,共有個基本事件,事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件有:、、、、,共個基本事件.因此,所求事件的概率為.故選:C.【題目點撥】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.2、B【解題分析】

取,則,,只有B符合.故選B.考點:基本不等式.3、B【解題分析】試題分析:設該女子第一天織布尺,則,解得,所以前天織布的尺數(shù)為,由,得,解得的最小值為,故選B.考點:等比數(shù)列的應用.4、B【解題分析】

設,則,逐步等價變形,直到可以用基本不等式求最值,即可得到本題答案.【題目詳解】由,得,設,則,所以.故選:B【題目點撥】本題主要考查利用基本不等式求最值,化簡變形是關鍵,考查計算能力,屬于中等題.5、A【解題分析】

出現(xiàn)面積,可轉化為觀察,和余弦定理很相似,但是有差別,差別就是條件是形式,而余弦定理中是形式,但是我們可以注意到:,所以可以完成本題.【題目詳解】由,所以在三角形中,再由正弦定理所以答案選擇A.【題目點撥】本題很靈活,在常數(shù)4的處理問題上有點巧妙,然后再借助余弦定理及正弦定理,難度較大.6、D【解題分析】

根據(jù)不等式的性質,一一分析選擇正誤即可.【題目詳解】根據(jù)不等式的性質,當時,對于A,若,則,故A錯誤;對于B,若,則,故B錯誤;對于C,若,則,故C錯誤;對于D,當時,總有成立,故D正確;故選:D.【題目點撥】本題考查不等式的基本性質,屬于基礎題.7、B【解題分析】

直接利用三角函數(shù)圖象的平移變換法則,對選項中的變換逐一判斷即可.【題目詳解】函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,對.函數(shù)的圖象,向左平移個單位,得,錯;函數(shù)的圖象,向右平移個單位,得,錯,故選B.【題目點撥】本題考查了三角函數(shù)的圖象,重點考查學生對三角函數(shù)圖象變換規(guī)律的理解與掌握,能否正確處理先周期變換后相位變換這種情況下圖象的平移問題,反映學生對所學知識理解的深度.8、B【解題分析】

利用三角函數(shù)的平移和伸縮變換的規(guī)律求出即可.【題目詳解】為了得到函數(shù)的圖象,先把函數(shù)圖像的縱坐標不變,橫坐標縮短到原來的倍到函數(shù)y=3sin2x的圖象,再把所得圖象所有的點向左平移個單位長度得到y(tǒng)=3sin(2x+)的圖象.故選:B.【題目點撥】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,正弦型函數(shù)性質的應用,三角函數(shù)圖象的平移變換和伸縮變換的應用,屬于基礎題.9、C【解題分析】

結合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【題目詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【題目點撥】本題考查了互斥事件和對立事件的定義的運用,考查了學生對知識的理解和掌握,屬于基礎題.10、A【解題分析】

利用一元二次方程根的分布的充要條件得到關于的不等式,再由為整數(shù),可得當取最小時,取最大,從而求得答案.【題目詳解】∵在上有兩個不相等的零點,∴∵,∴當取最小時,取最大,∵兩個零點的乘積小于1,∴,∵為整數(shù),令時,,滿足.故選:A.【題目點撥】本題考查一元二次函數(shù)的零點,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數(shù)的應用.二、填空題:本大題共6小題,每小題5分,共30分。11、乙;【解題分析】

一個看均值,要均值小,成績好;一個看方差,要方差小,成績穩(wěn)定.【題目詳解】乙的均值比甲小,與丙相同,乙的方差與甲相同,但比丙小,即乙成績好,又穩(wěn)定,應選乙、故答案為乙.【題目點撥】本題考查用樣本的數(shù)據(jù)特征來解決實際問題.一般可看均值(找均值好的)和方差(方差小的穩(wěn)定),這樣比較易得結論.12、.【解題分析】

以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出直線與直線所成角的余弦值.【題目詳解】解:四棱錐中,所有棱長均為2,是底面正方形中心,為中點,,平面,以為原點,為軸,為軸,為軸,建立如圖所示的空間直角坐標系,則,,,,,∴,,設直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【題目點撥】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于中檔題.13、【解題分析】

先將寫成的形式,再根據(jù)誘導公式進行求解.【題目詳解】由題意得:.故答案為:.【題目點撥】考查三角函數(shù)的誘導公式.,,,,.14、【解題分析】

利用誘導公式,二倍角公式,余弦定理化簡即可得解.【題目詳解】.故答案為.【題目點撥】本題主要考查了誘導公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.15、【解題分析】

由兩角差的正弦公式以及誘導公式,即可求出的值.【題目詳解】,所以,因為,故.【題目點撥】本題主要考查兩角差的正弦公式的逆用以及誘導公式的應用.16、【解題分析】

利用等差中項的性質可求出的值.【題目詳解】由等差中項的性質可得,解得.故答案為:.【題目點撥】本題考查利用等差中項的性質求項的值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(2)證明見解析(2)證明見解析【解題分析】

(1)連接,交于,結合平行四邊形的性質可得,再由線面平行的判定定理,即可得證(2)運用面面垂直的性質定理可得平面,推得,,,再由線面垂直的判定定理和嗎垂直的判定定理,即可得證.【題目詳解】證明:(1)連接,交于,可得四邊形為平行四邊形,且為的中點,可得為的中位線,可得,平面,面,可得面;(2)平面底面,,可得平面,即有,,可得,由,,可得四邊形為矩形,即有,又,,可得,且所以有平面,而平面,則平面平面.【題目點撥】本題考查線面平行和面面垂直的判定,注意運用線線平行和線面垂直的判定定理,考查推理能力,屬于中檔題.18、(1);(2).【解題分析】

(1)設出通項公式,利用待定系數(shù)法即得結果;(2)先求出通項,利用錯位相減法可以得到前項和.【題目詳解】(1)因為,,所以,解得故的通項公式為.(2)由(1)可得,則,①,②①-②得故.【題目點撥】本題主要考查等比數(shù)列的通項公式,錯位相減法求和,意在考查學生的分析能力及計算能力,難度中等.19、(Ⅰ)見解析(Ⅱ)【解題分析】試題分析:(Ⅰ)連接AC1交A1C于點F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運算求得結果試題解析:(1)證明:連結AC1交A1C于點F,則F為AC1中點又D是AB中點,連結DF,則BC1∥DF.3分因為DF?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因為ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE的體積為:==1.12分考點:直線與平面平行的判定;棱柱、棱錐、棱臺的體積20、(1)證明見解析(2)【解題分析】

(1)根據(jù)底面證得,證得,由此證得平面.(2)利用錐體體積公式,計算出所求錐體體積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論