版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖南省岳陽縣一中數(shù)學高一第二學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若圓與圓相切,則實數(shù)()A.9 B.-11 C.-11或-9 D.9或-112.某學生四次模擬考試時,其英語作文的減分情況如下表:考試次數(shù)x
1
2
3
4
所減分數(shù)y
4.5
4
3
2.5
顯然所減分數(shù)y與模擬考試次數(shù)x之間有較好的線性相關(guān)關(guān)系,則其線性回歸方程為()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.253.已知一扇形的周長為,圓心角為,則該扇形的面積為()A. B. C. D.4.已知角的頂點與原點重合,始邊與軸非負半軸重合,終邊過點,則()A. B. C. D.5.已知向量,滿足,,,則與的夾角為()A. B. C. D.6.直線的傾斜角是()A. B. C. D.7.已知數(shù)列的前項和為,若,對任意的正整數(shù)均成立,則()A.162 B.54 C.32 D.168.在中,(,,分別為角、、的對邊),則的形狀為()A.等邊三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形9.已知函數(shù)的導函數(shù)的圖象如圖所示,則()A.既有極小值,也有極大值 B.有極小值,但無極大值C.有極大值,但無極小值 D.既無極小值,也無極大值10.在ΔABC中,若,則=()A.6 B.4 C.-6 D.-4二、填空題:本大題共6小題,每小題5分,共30分。11.在數(shù)列中,若,則____.12.如圖所示,已知點,單位圓上半部分上的點滿足,則向量的坐標為________.13.已知在數(shù)列中,且,若,則數(shù)列的前項和為__________.14.設(shè),,,,則數(shù)列的通項公式=.15.若數(shù)列滿足,,則______.16.如圖,在三棱錐中,它的每個面都是全等的正三角形,是棱上的動點,設(shè),分別記與,所成角為,,則的取值范圍為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知余切函數(shù).(1)請寫出余切函數(shù)的奇偶性,最小正周期,單調(diào)區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調(diào)遞減.18.已知,,且向量與的夾角為.(1)若,求;(2)若與垂直,求.19.設(shè)向量,,.(1)若,求實數(shù)的值;(2)求在方向上的投影.20.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.21.為了了解某省各景區(qū)在大眾中的熟知度,隨機從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計結(jié)果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡段在的概率
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】
分別討論兩圓內(nèi)切或外切,圓心距和半徑之間的關(guān)系即可得出結(jié)果.【題目詳解】圓的圓心坐標為,半徑;圓的圓心坐標為,半徑,討論:當圓與圓外切時,,所以;當圓與圓內(nèi)切時,,所以,綜上,或.【題目點撥】本題主要考查圓與圓位置關(guān)系,由兩圓相切求參數(shù)的值,屬于基礎(chǔ)題型.2、D【解題分析】試題分析:先求樣本中心點,利用線性回歸方程一定過樣本中心點,代入驗證,可得結(jié)論.解:先求樣本中心點,,由于線性回歸方程一定過樣本中心點,代入驗證可知y=﹣0.7x+5.25,滿足題意故選D.點評:本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程一定過樣本中心點,屬于基礎(chǔ)題.3、C【解題分析】
根據(jù)題意設(shè)出扇形的弧長與半徑,通過扇形的周長與弧長公式即可求出扇形的弧長與半徑,進而根據(jù)扇形的面積公式即可求解.【題目詳解】設(shè)扇形的弧長為,半徑為,扇形的圓心角的弧度數(shù)是.
則由題意可得:.
可得:,解得:,.可得:故選:C【題目點撥】本題主要考查扇形的周長與扇形的面積公式的應(yīng)用,以及考查學生的計算能力,屬于基礎(chǔ)題.4、C【解題分析】
利用三角函數(shù)定義即可求得:,,再利用余弦的二倍角公式得解.【題目詳解】因為角的終邊過點,所以點到原點的距離所以,所以故選C【題目點撥】本題主要考查了三角函數(shù)定義及余弦的二倍角公式,考查計算能力,屬于較易題.5、B【解題分析】
將變形解出夾角的余弦值,從而求出與的夾角.【題目詳解】由得,即又因為,所以,所以,故選B.【題目點撥】本題考查向量的夾角,屬于簡單題.6、D【解題分析】
先求出直線的斜率,再求直線的傾斜角.【題目詳解】由題得直線的斜率.故選:D【題目點撥】本題主要考查直線的斜率和傾斜角的計算,意在考查學生對該知識的理解掌握水平和分析推理能力.7、B【解題分析】
由,得到數(shù)列表示公比為3的等比數(shù)列,求得,進而利用,即可求解.【題目詳解】由,可得,所以數(shù)列表示公比為3的等比數(shù)列,又由,,得,解得,所以,所以故選B.【題目點撥】本題主要考查了等比數(shù)列的定義,以及數(shù)列中與之間的關(guān)系,其中解答中熟記等比數(shù)列的定義和與之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解題分析】
利用二倍角公式,正弦定理,結(jié)合和差公式化簡等式得到,得到答案.【題目詳解】故答案選B【題目點撥】本題考查了正弦定理,和差公式,意在考查學生的綜合應(yīng)用能力.9、B【解題分析】由導函數(shù)圖象可知,在上為負,在上非負,在上遞減,在遞增,在處有極小值,無極大值,故選B.10、C【解題分析】
向量的點乘,【題目詳解】,選C.【題目點撥】向量的點乘,需要注意后面乘的是兩向量的夾角的余弦值,本題如果直接計算的話,的夾角為∠BAC的補角二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
根據(jù)遞推關(guān)系式,依次求得的值.【題目詳解】由于,所以,.故答案為:【題目點撥】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列某一項的值,屬于基礎(chǔ)題.12、【解題分析】
設(shè)點,由和列方程組解出、的值,可得出向量的坐標.【題目詳解】設(shè)點的坐標為,則,由,得,解得,因此,,故答案為.【題目點撥】本題考查向量的坐標運算,解題時要將一些條件轉(zhuǎn)化為與向量坐標相關(guān)的等式,利用方程思想進行求解,考查運算求解能力,屬于中等題.13、【解題分析】
根據(jù)遞推關(guān)系式可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求得,得到,進而求得;利用裂項相消法求得結(jié)果.【題目詳解】由得:數(shù)列是首項為,公差為的等差數(shù)列,即:設(shè)前項和為本題正確結(jié)果:【題目點撥】本題考查根據(jù)遞推關(guān)系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項的求解、裂項相消法求數(shù)列的前項和;關(guān)鍵是能夠通過通項公式的形式確定采用的求和方法,屬于??碱}型.14、2n+1【解題分析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.15、【解題分析】
利用遞推公式再遞推一步,得到一個新的等式,兩個等式相減,再利用累乘法可求出數(shù)列的通項公式,利用所求的通項公式可以求出的值.【題目詳解】得,,所以有,因此.故答案為:【題目點撥】本題考查了利用遞推公式求數(shù)列的通項公式,考查了累乘法,考查了數(shù)學運算能力.16、【解題分析】
作交于,連接,可得是與所成的角根據(jù)等腰三角形的性質(zhì),作交于,同理可得,根據(jù),的關(guān)系即可得解.【題目詳解】解:作交于,連接,因為三棱錐中,它的每個面都是全等的正三角形,為正三角形,,,是與所成的角,根據(jù)等腰三角形的性質(zhì).作交于,同理可得,則,∵,∴,得.故答案為:【題目點撥】本題考查異面直線所成的角,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)奇函數(shù);周期為,單調(diào)遞減速區(qū)間:(2)證明見解析【解題分析】
(1)直接利用函數(shù)的性質(zhì)寫出結(jié)果.(2)利用單調(diào)性的定義和三角函數(shù)關(guān)系式的變換求出結(jié)果.【題目詳解】(1)奇函數(shù);周期為,單調(diào)遞減區(qū)間:(2)任取,,,有因為,所以,于是,,從而,.因此余切函數(shù)在區(qū)間上單調(diào)遞減.【題目點撥】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,函數(shù)關(guān)系式的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.18、(1);(2)【解題分析】
(1)根據(jù)平面向量的數(shù)量積公式計算的值;(2)根據(jù)兩向量垂直數(shù)量積為0,列方程求出cosθ的值和對應(yīng)角θ的值.【題目詳解】(1)因為,所以(2)因為與垂直,所以即,所以又,所以【題目點撥】本題考查了平面向量的數(shù)量積與模長和夾角的計算問題,是基礎(chǔ)題.19、(1);(2).【解題分析】
(1)計算出的坐標,然后利用共線向量的坐標表示列出等式求出實數(shù)的值;(2)求出和,從而可得出在方向上的投影為.【題目詳解】(1),,,,,,解得;(2),,在方向上的投影.【題目點撥】本題考查平面向量的坐標運算,考查共線向量的坐標運算以及投影的計算,在解題時要弄清楚這些知識點的定義以及坐標運算律,考查計算能力,屬于中等題.20、(1)周期為π,最大值為2.(2)【解題分析】
(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【題目詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值為2;(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,當b=c=1時,等號成立.∴a2≥4﹣1=3,即a.則a的最小值為.【題目點撥】本題考查三角函數(shù)的恒等變換,余弦形函數(shù)的性質(zhì)的應(yīng)用,余弦定理和基本不等式的應(yīng)用,是中檔題.21、(1),,,;(2)分邊抽取2,3,1人;(3).【解題分析】
(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計算得到第組的人數(shù)和頻率,從而可得總?cè)藬?shù);根據(jù)總數(shù)、頻率和頻數(shù)的關(guān)系,可分別計算得到所求結(jié)果;(2)首先確定第組的總?cè)藬?shù),根據(jù)分層抽樣原則計算即可得到結(jié)果;(3)首先計算得到基本事件總數(shù);再計算出恰好沒有年齡段在包含的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【題目詳解】(1)第組的人數(shù)為:人,第組的頻率為:第一組的頻率為第一組的人數(shù)為:第二組的頻率為第二組的人數(shù)為:第三組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科學知識讀后感
- 跨境貿(mào)易服務(wù)平臺建設(shè)協(xié)議
- 工業(yè)自動化控制技術(shù)研發(fā)合同
- 新時代農(nóng)產(chǎn)品電商銷售新模式摸索
- 中學生名著閱讀的心得故事解讀
- 三農(nóng)產(chǎn)品消費者權(quán)益保護手冊
- 互聯(lián)網(wǎng)金融投資風險提示協(xié)議
- 古代文明之光的故事理解
- 北京二年級上數(shù)學試卷
- 醫(yī)療行業(yè)智能診療與醫(yī)療數(shù)據(jù)管理方案
- 心肺復蘇知識培訓總結(jié)與反思
- 楚雄師范學院-18級-葡萄酒專業(yè)-葡萄酒工藝學復習題及答案
- 高速公路機電工程標準化施工管理質(zhì)量控制
- 助產(chǎn)士的述職報告
- 醫(yī)保繳費問題排查整改報告
- 維護社會穩(wěn)定規(guī)定
- 2024年黑龍江高中學業(yè)水平合格性考試數(shù)學試卷試題(含答案詳解)
- 2024年度醫(yī)院財務(wù)部述職報告課件
- 《牙髓血運重建術(shù)》課件
- 浙江省杭州市余杭區(qū)2023-2024學年五年級上學期1月期末道德與法治試題
- 山東省濟南市歷城區(qū)2023-2024學年四年級上學期期末數(shù)學試卷
評論
0/150
提交評論