版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆湖南省永州市祁陽縣高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.2.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2aA.145 B.114 C.83.某學(xué)校的A,B,C三個(gè)社團(tuán)分別有學(xué)生人,人,人,若采用分層抽樣的方法從三個(gè)社團(tuán)中共抽取人參加某項(xiàng)活動(dòng),則從A社團(tuán)中應(yīng)抽取的學(xué)生人數(shù)為()A.2 B.4 C.5 D.64.設(shè)等比數(shù)列的公比,前n項(xiàng)和為,則()A.2 B.4 C. D.5.在正項(xiàng)等比數(shù)列中,,為方程的兩根,則()A.9 B.27 C.64 D.816.已知函數(shù),則下列命題正確的是()①的最大值為2;②的圖象關(guān)于對(duì)稱;③在區(qū)間上單調(diào)遞增;④若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,,,則;A.①② B.①②③ C.①③④ D.①②③④7.已知是常數(shù),如果函數(shù)的圖像關(guān)于點(diǎn)中心對(duì)稱,那么的最小值為()A. B. C. D.8.已知圓,直線,點(diǎn)在直線上.若存在圓上的點(diǎn),使得(為坐標(biāo)原點(diǎn)),則的取值范圍是A. B. C. D.9.已知函數(shù)f(x),則f[f(2)]=()A.1 B.2 C.3 D.410.已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.不等式有解,則實(shí)數(shù)的取值范圍是______.12.已知函數(shù)的最小正周期為,若將該函數(shù)的圖像向左平移個(gè)單位后,所得圖像關(guān)于原點(diǎn)對(duì)稱,則的最小值為________.13.已知,則的取值范圍是_______;14.若無窮數(shù)列的所有項(xiàng)都是正數(shù),且滿足,則______.15.已知函數(shù),下列結(jié)論中:函數(shù)關(guān)于對(duì)稱;函數(shù)關(guān)于對(duì)稱;函數(shù)在是增函數(shù),將的圖象向右平移可得到的圖象.其中正確的結(jié)論序號(hào)為______.16.若正實(shí)數(shù),滿足,則的最小值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知以點(diǎn)為圓心的圓C被直線截得的弦長為.(1)求圓C的標(biāo)準(zhǔn)方程:(2)求過與圓C相切的直線方程:(3)若Q是直線上的動(dòng)點(diǎn),QR,QS分別切圓C于R,S兩點(diǎn).試問:直線RS是否恒過定點(diǎn)?若是,求出恒過點(diǎn)坐標(biāo):若不是,說明理由.18.已知函數(shù),的部分圖像如圖所示,點(diǎn),,都在的圖象上.(1)求的解析式;(2)當(dāng)時(shí),恒成立,求的取值范圍.19.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a20.若不等式的解集是.(1)求的值;(2)當(dāng)為何值時(shí),的解集為.21.如圖扇形的圓心角,半徑為2,E為弧AB的中點(diǎn)C?D為弧AB上的動(dòng)點(diǎn),且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達(dá)式及定義域;(2)求的最大值及此時(shí)的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解題分析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因?yàn)?,所以選B.點(diǎn)睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標(biāo)公式;三是利用數(shù)量積的幾何意義.(2)求較復(fù)雜的平面向量數(shù)量積的運(yùn)算時(shí),可先利用平面向量數(shù)量積的運(yùn)算律或相關(guān)公式進(jìn)行化簡.2、B【解題分析】
由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【題目詳解】因?yàn)镾n=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時(shí)取等號(hào),此時(shí)∵m,n取整數(shù),∴均值不等式等號(hào)條件取不到,則1m驗(yàn)證可得,當(dāng)m=2,n=4時(shí),1m+9【題目點(diǎn)撥】本題主要考查等比數(shù)列的定義與通項(xiàng)公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時(shí),一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗(yàn)證等號(hào)能否成立(主要注意兩點(diǎn),一是相等時(shí)參數(shù)是否在定義域內(nèi),二是多次用≥或≤時(shí)等號(hào)能否同時(shí)成立).3、B【解題分析】
分層抽樣每部分占比一樣,通過A,B,C三個(gè)社團(tuán)為,易得A中的人數(shù)?!绢}目詳解】A,B,C三個(gè)社團(tuán)人數(shù)比為,所以12中A有人,B有人,C有人。故選:B【題目點(diǎn)撥】此題考查分層抽樣原理,根據(jù)抽樣前后每部分占比一樣求解即可,屬于簡單題目。4、D【解題分析】
設(shè)首項(xiàng)為,利用等比數(shù)列的求和公式與通項(xiàng)公式求解即可.【題目詳解】設(shè)首項(xiàng)為,因?yàn)榈缺葦?shù)列的公比,所以,故選:D.【題目點(diǎn)撥】本題主要考查等比數(shù)列的求和公式與通項(xiàng)公式,熟練掌握基本公式是解題的關(guān)鍵,屬于基礎(chǔ)題.5、B【解題分析】
由韋達(dá)定理得,再利用等比數(shù)列的性質(zhì)求得結(jié)果.【題目詳解】由已知得是正項(xiàng)等比數(shù)列本題正確選項(xiàng):【題目點(diǎn)撥】本題考查等比數(shù)列的三項(xiàng)之積的求法,關(guān)鍵是對(duì)等比數(shù)列的性質(zhì)進(jìn)行合理運(yùn)用,屬于基礎(chǔ)題.6、C【解題分析】
,由此判斷①的正誤,根據(jù)判斷②的正誤,由求出的單調(diào)遞增區(qū)間,即可判斷③的正誤,結(jié)合的圖象判斷④的正誤.【題目詳解】因?yàn)?,故①正確因?yàn)?,故②不正確由得所以在區(qū)間上單調(diào)遞增,故③正確若實(shí)數(shù)m使得方程在上恰好有三個(gè)實(shí)數(shù)解,結(jié)合的圖象知,必有此時(shí),另一解為即,,滿足,故④正確綜上可知:命題正確的是①③④故選:C【題目點(diǎn)撥】本題考查的是三角函數(shù)的圖象及其性質(zhì),解決這類問題時(shí)首先應(yīng)把函數(shù)化成三角函數(shù)基本型.7、C【解題分析】
將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,得出,求出的表達(dá)式,可得出的最小值.【題目詳解】由于函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱,則,,則,因此,當(dāng)時(shí),取得最小值,故選C.【題目點(diǎn)撥】本題考查余弦函數(shù)的對(duì)稱性,考查初相絕對(duì)值的最小值,解題時(shí)要結(jié)合題中條件求出初相的表達(dá)式,結(jié)合表達(dá)式進(jìn)行計(jì)算,考查分析問題和解決問題的能力,屬于中等題.8、B【解題分析】
根據(jù)條件若存在圓C上的點(diǎn)Q,使得為坐標(biāo)原點(diǎn)),等價(jià)即可,求出不等式的解集即可得到的范圍【題目詳解】圓O外有一點(diǎn)P,圓上有一動(dòng)點(diǎn)Q,在PQ與圓相切時(shí)取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當(dāng),且PQ與圓相切時(shí),,
而當(dāng)時(shí),Q在圓上任意移動(dòng),存在恒成立.
因此滿足,就能保證一定存在點(diǎn)Q,使得,否則,這樣的點(diǎn)Q是不存在的,
點(diǎn)在直線上,,即
,
,
計(jì)算得出,,
的取值范圍是,
故選B.考點(diǎn):正弦定理、直線與圓的位置關(guān)系.9、B【解題分析】
根據(jù)分段函數(shù)的表達(dá)式求解即可.【題目詳解】由題.故選:B【題目點(diǎn)撥】本題主要考查了分段函數(shù)的求值,屬于基礎(chǔ)題型.10、C【解題分析】
本題首先可根據(jù)首項(xiàng)為以及公差為求出數(shù)列的通項(xiàng)公式,然后根據(jù)以及數(shù)列的通項(xiàng)公式即可求出答案.【題目詳解】因?yàn)閿?shù)列為首項(xiàng),公差的等差數(shù)列,所以,因?yàn)樗?,,故選C.【題目點(diǎn)撥】本題考查如何判斷實(shí)數(shù)為數(shù)列中的哪一項(xiàng),主要考查等差數(shù)列的通項(xiàng)公式的求法,等差數(shù)列的通項(xiàng)公式為,考查計(jì)算能力,是簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由參變量分離法可得知,由二倍角的余弦公式以及二次函數(shù)的基本性質(zhì)求出函數(shù)的最小值,即可得出實(shí)數(shù)的取值范圍.【題目詳解】不等式有解,等價(jià)于存在實(shí)數(shù),使得關(guān)于的不等式成立,故只需.令,,由二次函數(shù)的基本性質(zhì)可知,當(dāng)時(shí),該函數(shù)取得最小值,即,.因此,實(shí)數(shù)的取值范圍是.故答案為:.【題目點(diǎn)撥】本題考查不等式有解的問題,涉及二倍角余弦公式以及二次函數(shù)基本性質(zhì)的應(yīng)用,一般轉(zhuǎn)化為函數(shù)的最值來求解,考查計(jì)算能力,屬于中等題.12、【解題分析】
先利用周期公式求出,再利用平移法則得到新的函數(shù)表達(dá)式,依據(jù)函數(shù)為奇函數(shù),求出的表達(dá)式,即可求出的最小值.【題目詳解】由得,所以,向左平移個(gè)單位后,得到,因?yàn)槠鋱D像關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)為奇函數(shù),有,則,故的最小值為.【題目點(diǎn)撥】本題主要考查三角函數(shù)的性質(zhì)以及圖像變換,以及型的函數(shù)奇偶性判斷條件.一般地為奇函數(shù),則;為偶函數(shù),則;為奇函數(shù),則;為偶函數(shù),則.13、【解題分析】
本題首先可以根據(jù)向量的運(yùn)算得出,然后等式兩邊同時(shí)平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【題目詳解】設(shè)向量與向量的夾角為,因?yàn)?,所以,即,因?yàn)椋?,即,所以的取值范圍是.【題目點(diǎn)撥】本題考查向量的運(yùn)算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計(jì)算能力,是簡單題.14、【解題分析】
先由作差法求出數(shù)列的通項(xiàng)公式為,即可計(jì)算出,然后利用常用數(shù)列的極限即可計(jì)算出的值.【題目詳解】當(dāng)時(shí),,可得;當(dāng)時(shí),由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【題目點(diǎn)撥】本題考查利用作差法求數(shù)列通項(xiàng),同時(shí)也考查了數(shù)列極限的計(jì)算,考查計(jì)算能力,屬于中等題.15、【解題分析】
把化成的型式即可。【題目詳解】由題意得所以對(duì)稱軸為,對(duì),當(dāng)時(shí),對(duì)稱中心為,對(duì)。的增區(qū)間為,對(duì)向右平移得。錯(cuò)【題目點(diǎn)撥】本題考查三角函數(shù)的性質(zhì),三角函數(shù)變換,意在考查學(xué)生對(duì)三角函數(shù)的圖像與性質(zhì)的掌握情況。16、【解題分析】
將配湊成,由此化簡的表達(dá)式,并利用基本不等式求得最小值.【題目詳解】由得,所以.當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.故填:.【題目點(diǎn)撥】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或(3)直線RS恒過定點(diǎn)【解題分析】
(1)由弦長可得,進(jìn)而求解即可;(2)分別討論直線的斜率存在與不存在的情況,再利用圓心到直線距離等于半徑求解即可;(3)由QR,QS分別切圓C于R,S兩點(diǎn),可知,在以為直徑的圓上,設(shè)為,則可得到以為直徑的圓的方程,與圓聯(lián)立可得,由求解即可【題目詳解】(1)由題,設(shè)點(diǎn)到直線的距離為,則,則弦長,解得,所以圓的標(biāo)準(zhǔn)方程為:(2)當(dāng)切線斜率不存在時(shí),直線方程為,圓心到直線距離為2,故此時(shí)相切;當(dāng)切線斜率存在時(shí),設(shè)切線方程為,即,則,解得,則直線方程為,即,綜上,切線方程為或(3)直線RS恒過定點(diǎn),由題,,則,在以為直徑的圓上,設(shè)為,則以為直徑的圓的方程為:,整理可得,與圓:聯(lián)立可得:,即,令,解得,故無論取何值時(shí),直線恒過定點(diǎn)【題目點(diǎn)撥】本題考查圓的方程,考查已知圓外一點(diǎn)求切線方程,考查直線恒過定點(diǎn)問題18、(1);(2)【解題分析】
(1)由三角函數(shù)圖像,求出即可;(2)求出函數(shù)的值域,再列不等式組求解即可.【題目詳解】解:(1)由的圖象可知,則,因?yàn)?,,所以,?因?yàn)樵诤瘮?shù)的圖象上,所以,所以,即,因?yàn)?,所?因?yàn)辄c(diǎn)在函數(shù)的圖象上,所以,解得,故.(2)因?yàn)椋?,所以,則.因?yàn)?,所以,所以,解?故的取值范圍為.【題目點(diǎn)撥】本題考查了利用三角函數(shù)圖像求解析式,重點(diǎn)考查了三角函數(shù)值域的求法,屬中檔題.19、(1)-π4【解題分析】
(1)兩向量垂直,坐標(biāo)關(guān)系滿足x1x2+y1y2=0,由已知可得關(guān)于sin【題目詳解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【題目點(diǎn)撥】本題考查向量的坐標(biāo)運(yùn)算,兩向量垂直,求兩向量之和的模的最大值,當(dāng)計(jì)算到最大值為3+22時(shí),由平方和公式還可以繼續(xù)化簡,即3+220、(1);(2)【解題分析】
(1)由不等式的解集是,利用根與系數(shù)關(guān)系列式求出的值;(2)代入得值后,由不等式對(duì)應(yīng)的方程的判別式小于等于0,列式求解的取值范圍.【題目詳解】(1)由題意知,1﹣<0,且﹣1和1是方程的兩根,∴,解得=1.(2),即為,若此不等式的解集為,則2﹣4×1×1≤0,∴﹣6≤≤6,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新小區(qū)物業(yè)承包合同示例
- 2024系統(tǒng)開發(fā)合同
- 2024年餐廳租賃合同模板
- 2024分期付款購買合同
- 文化節(jié)慶活動(dòng)贊助協(xié)議
- 2025年會(huì)計(jì)專業(yè)考試高級(jí)會(huì)計(jì)實(shí)務(wù)試卷及解答參考
- 排水箱涵勞務(wù)分包合同2024年
- 城市管道天然氣特許經(jīng)營合同
- 撫養(yǎng)權(quán)變更協(xié)議模板2024年
- 協(xié)商一致解除勞動(dòng)合同書樣本
- 新蘇教版五年級(jí)上冊(cè)科學(xué)全冊(cè)教學(xué)課件(2022年春整理)
- 小學(xué)體育水平一《走與游戲》教學(xué)設(shè)計(jì)
- 秋日私語(完整精確版)克萊德曼(原版)鋼琴雙手簡譜 鋼琴譜
- 辦公室室內(nèi)裝修工程技術(shù)規(guī)范
- 鹽酸安全知識(shí)培訓(xùn)
- 萬盛關(guān)于成立醫(yī)療設(shè)備公司組建方案(參考模板)
- 消防安全巡查記錄臺(tái)帳(共2頁)
- 科技特派員工作調(diào)研報(bào)告
- 中波廣播發(fā)送系統(tǒng)概述
- 縣疾控中心中層干部競聘上崗實(shí)施方案
- 急性心肌梗死精美PPt完整版
評(píng)論
0/150
提交評(píng)論