版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重慶一中2024年高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在的展開(kāi)式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.2.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)3.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.4.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)5.定義兩種運(yùn)算“★”與“◆”,對(duì)任意,滿足下列運(yùn)算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.6.若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)圖象的一條對(duì)稱軸的方程可以為()A. B. C. D.7.將一張邊長(zhǎng)為的紙片按如圖(1)所示陰影部分裁去四個(gè)全等的等腰三角形,將余下部分沿虛線折疊并拼成一個(gè)有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.8.已知數(shù)列的前項(xiàng)和為,且,,則()A. B. C. D.9.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.10.在復(fù)平面內(nèi),復(fù)數(shù)z=i對(duì)應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),所得向量對(duì)應(yīng)的復(fù)數(shù)是()A. B. C. D.11.已知集合的所有三個(gè)元素的子集記為.記為集合中的最大元素,則()A. B. C. D.12.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號(hào)為()A.③④ B.①② C.①③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為_(kāi)_____.14.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍有___________.15.滿足約束條件的目標(biāo)函數(shù)的最小值是.16.從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的概率為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖1,與是處在同-個(gè)平面內(nèi)的兩個(gè)全等的直角三角形,,,連接是邊上一點(diǎn),過(guò)作,交于點(diǎn),沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.18.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.19.(12分)已知函數(shù)的定義域?yàn)?(1)求實(shí)數(shù)的取值范圍;(2)設(shè)實(shí)數(shù)為的最小值,若實(shí)數(shù),,滿足,求的最小值.20.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.21.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.22.(10分)如圖,在直三棱柱中,,點(diǎn)P,Q分別為,的中點(diǎn).求證:(1)PQ平面;(2)平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開(kāi)式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,2、C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.4、D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因?yàn)楹瘮?shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個(gè)單位后,得到圖像所對(duì)應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對(duì)稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.5、B【解析】
根據(jù)新運(yùn)算的定義分別得出◆2020和2020★2018的值,可得選項(xiàng).【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點(diǎn)睛】本題考查定義新運(yùn)算,關(guān)鍵在于理解,運(yùn)用新定義進(jìn)行求值,屬于中檔題.6、B【解析】
由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱軸的求法,求得的對(duì)稱軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱軸的求法,屬于中檔題.7、B【解析】設(shè)折成的四棱錐的底面邊長(zhǎng)為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.8、C【解析】
根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項(xiàng)公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項(xiàng)為,第二項(xiàng)為,所以公比為.所以,所以.故選:C【點(diǎn)睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項(xiàng)公式,屬于基礎(chǔ)題.9、B【解析】
根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當(dāng)時(shí),,無(wú)意義,故排除A;又,則,故排除D;對(duì)于C,當(dāng)時(shí),,所以不單調(diào),故排除C;故選:B【點(diǎn)睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問(wèn)題利用特殊值與排除法是最佳選擇,屬于基礎(chǔ)題.10、A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對(duì)應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對(duì)應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對(duì)應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.11、B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個(gè)元素子集的個(gè)數(shù),即可得解.【詳解】集合含有個(gè)元素的子集共有,所以.在集合中:最大元素為的集合有個(gè);最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點(diǎn)睛】此題考查集合相關(guān)的新定義問(wèn)題,其本質(zhì)在于弄清計(jì)數(shù)原理,分類討論,分別求解.12、B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對(duì)每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】
已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問(wèn)題,屬于基礎(chǔ)題14、或【解析】
函數(shù)的零點(diǎn)方程的根,求出方程的兩根為,,從而可得或,即或.【詳解】函數(shù)在區(qū)間的零點(diǎn)方程在區(qū)間的根,所以,解得:,,因?yàn)楹瘮?shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),所以或,即或.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,在求含絕對(duì)值方程時(shí),要注意對(duì)絕對(duì)值內(nèi)數(shù)的正負(fù)進(jìn)行討論.15、-2【解析】
可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.16、【解析】
先求出隨機(jī)抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結(jié)果.【詳解】解:從集合中隨機(jī)取一個(gè)元素,記為,從集合中隨機(jī)取一個(gè)元素,記為,則的事件數(shù)為9個(gè),即為,,,其中滿足的有,,,共有8個(gè),故的概率為.【點(diǎn)睛】本題考查了古典概型的計(jì)算,解題的關(guān)鍵是準(zhǔn)確列舉出所有事件數(shù).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)(3)【解析】
根據(jù)折疊圖形,,由線面垂直的判定定理可得平面,再根據(jù)平面,得到.(2)根據(jù),以為坐標(biāo)原點(diǎn),為軸建立空間直角坐標(biāo)系,根據(jù),可知,,表示相應(yīng)點(diǎn)的坐標(biāo),分別求得平面與平面的法向量,代入求解.設(shè)所求幾何體的體積為,設(shè)為高,則,表示梯形BEFD和ABD的面積由,再利用導(dǎo)數(shù)求最值.【詳解】(1)證明:不妨設(shè)與的交點(diǎn)為與的交點(diǎn)為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因?yàn)槠矫?,所?...(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標(biāo)原點(diǎn),為軸建立如圖所示的空間直角坐標(biāo)系由題意知由可知,則則有,,設(shè)平面與平面的法向量分別為則有則所以因?yàn)?,解得設(shè)所求幾何體的體積為,設(shè),則,當(dāng)時(shí),,當(dāng)時(shí),在是增函數(shù),在上是減函數(shù)當(dāng)時(shí),有最大值,即六面體的體積的最大值是【點(diǎn)睛】本題主要考查線線垂直,線面垂直,面面垂直的轉(zhuǎn)化,二面角的向量求法和空間幾何體的體積,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.18、(1);(2)證明見(jiàn)解析【解析】
(1)利用零點(diǎn)分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標(biāo)因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因?yàn)?,所以,,所以,所?【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.19、(1);(2)【解析】
(1)首先通過(guò)對(duì)絕對(duì)值內(nèi)式子符號(hào)的討論,將不等式轉(zhuǎn)化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因?yàn)楹瘮?shù)定義域?yàn)?,即恒成立,所以恒成立由單調(diào)性可知當(dāng)時(shí),有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當(dāng)且僅當(dāng),,時(shí),等號(hào)成立【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法,柯西不等式及其應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無(wú)極大值;(3)見(jiàn)解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對(duì)求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎茫瑒t,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無(wú)極大值.(3)要證成立,只需證成立.令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以的極大值為,即由(2)知,時(shí),,且的最小值點(diǎn)與的最大值點(diǎn)不同,所以,即.所以,.【點(diǎn)睛】知識(shí)方面,考查建立方程組求未知數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問(wèn)題和解決問(wèn)題的能力以及運(yùn)算求解能力;試題難度大.21、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人房屋借款合同格式版(2篇)
- 2025年二手辦公家具轉(zhuǎn)讓協(xié)議(2篇)
- 2025年個(gè)人平房租賃合同標(biāo)準(zhǔn)版本(三篇)
- 2025年產(chǎn)品購(gòu)銷合同范例(2篇)
- 2025年五年級(jí)品德與社會(huì)教學(xué)總結(jié)模版(三篇)
- 2025年鄉(xiāng)村所有制企業(yè)職工勞動(dòng)合同(2篇)
- 2025年主債權(quán)轉(zhuǎn)讓協(xié)議范文(2篇)
- 早教中心裝修合同模板-@-1
- 工業(yè)園區(qū)裝修分包合同樣本
- 汽車維修配件物流合同模板
- 中醫(yī)外治法課件
- 2025屆山東省濱州市三校聯(lián)考語(yǔ)文高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 第15屆-17屆全國(guó)中學(xué)生物理競(jìng)賽預(yù)賽試卷含答案
- 道路運(yùn)輸企業(yè)主要負(fù)責(zé)人和安全生產(chǎn)管理人員安全考核題(公共部分題+專業(yè)部分題)及答案
- 外研版小學(xué)英語(yǔ)(三起點(diǎn))六年級(jí)上冊(cè)期末測(cè)試題及答案(共3套)
- 月結(jié)合同模板
- 上海市黃浦區(qū)2024年數(shù)學(xué)六年級(jí)第一學(xué)期期末監(jiān)測(cè)試題含解析
- 2023電化學(xué)儲(chǔ)能電站消防安全標(biāo)準(zhǔn)鉛炭電池(鉛酸電池)
- 青島版五四制四年級(jí)數(shù)學(xué)上冊(cè)豎式計(jì)算100道
- DB11T 1322.94-2024安全生產(chǎn)等級(jí)評(píng)定技術(shù)規(guī)范 第94部分:救助管理機(jī)構(gòu)
- 新教材-外研版高中英語(yǔ)選擇性必修第二冊(cè)全冊(cè)教學(xué)課件(按單元排序-)
評(píng)論
0/150
提交評(píng)論