2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題含解析_第1頁
2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題含解析_第2頁
2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題含解析_第3頁
2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題含解析_第4頁
2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省棗莊市八中東校區(qū)數(shù)學(xué)高一下期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若樣本數(shù)據(jù),,…,的方差為2,則數(shù)據(jù),,…,的方差為()A.4 B.8 C.16 D.322.在中,角A、B、C所對的邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則()A. B. C. D.3.若||=2cos15°,||=4sin15°,的夾角為30°,則等于()A. B. C.2 D.4.某小吃店的日盈利(單位:百元)與當(dāng)天平均氣溫(單位:℃)之間有如下數(shù)據(jù):/℃/百元對上述數(shù)據(jù)進行分析發(fā)現(xiàn),與之間具有線性相關(guān)關(guān)系,則線性回歸方程為()參考公式:A. B.C. D.5.已知,是兩個不同的平面,給出下列四個條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個平面,使得,.其中可以推出的條件個數(shù)是()A.1 B.2 C.3 D.46.已知為第Ⅱ象限角,則的值為()A. B. C. D.7.如圖,為正方體,下面結(jié)論錯誤的是()A.異面直線與所成的角為45° B.平面C.平面平面 D.異面直線與所成的角為45°8.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在位置為,若將軍從山腳下的點處出發(fā),河岸線所在直線方程為,則“將軍飲馬”的最短總路程為()A.4 B.5 C. D.9.在三棱錐中,已知所有棱長均為,是的中點,則異面直線與所成角的余弦值為()A. B. C. D.10.已知數(shù)列是各項均為正數(shù)且公比不等于1的等比數(shù)列,對于函數(shù),若數(shù)列為等差數(shù)列,則稱函數(shù)為“保比差數(shù)列函數(shù)”,現(xiàn)有定義在上的如下函數(shù):①,②,③;④,則為“保比差數(shù)列函數(shù)”的所有序號為()A.①② B.①②④ C.③④ D.①②③④二、填空題:本大題共6小題,每小題5分,共30分。11.已知{}是等差數(shù)列,是它的前項和,且,則____.12.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.13.定義運算,如果,并且不等式對任意實數(shù)x恒成立,則實數(shù)m的范圍是______.14.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.15.已知數(shù)列滿足,,,則__________.16.若正四棱錐的所有棱長都相等,則該棱錐的側(cè)棱與底面所成的角的大小為____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量且,(1)求向量與的夾角;(2)求的值.18.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的單調(diào)遞增區(qū)間.19.如圖,已知平面,為矩形,分別為的中點,.(1)求證:平面;(2)求證:面平面;(3)求點到平面的距離.20.在直角坐標(biāo)系中,點,圓的圓心為,半徑為2.(Ⅰ)若,直線經(jīng)過點交圓于、兩點,且,求直線的方程;(Ⅱ)若圓上存在點滿足,求實數(shù)的取值范圍.21.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

根據(jù),則即可求解.【題目詳解】因為樣本數(shù)據(jù),,…,的方差為2,所以,,…,的方差為,故選B.【題目點撥】本題主要考查了方差的概念及求法,屬于容易題.2、A【解題分析】

先由a、b、c成等比數(shù)列,得到,再由題中條件,結(jié)合余弦定理,即可求出結(jié)果.【題目詳解】解:a、b、c成等比數(shù)列,所以,?所以,由余弦定理可知,又,所以.故選A.【題目點撥】本題主要考查解三角形,熟記余弦定理即可,屬于常考題型.3、B【解題分析】分析:先根據(jù)向量數(shù)量積定義化簡,再根據(jù)二倍角公式求值.詳解:因為,所以選B.點睛:平面向量數(shù)量積的類型及求法(1)求平面向量數(shù)量積有三種方法:一是夾角公式;二是坐標(biāo)公式;三是利用數(shù)量積的幾何意義.(2)求較復(fù)雜的平面向量數(shù)量積的運算時,可先利用平面向量數(shù)量積的運算律或相關(guān)公式進行化簡.4、B【解題分析】

計算出,,把數(shù)據(jù)代入公式計算,即可得到答案.【題目詳解】由題可得:,,,,;所以,,則線性回歸方程為;故答案選B【題目點撥】本題考查線性回歸方程的求解,考查學(xué)生的計算能力,屬于基礎(chǔ)題.5、B【解題分析】當(dāng),不平行時,不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個平面,使得,,則,相交或平行,所以不正確;故選6、B【解題分析】

首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【題目詳解】因為,所以或,又為第Ⅱ象限角,故,.因為為第Ⅱ象限角即,所以,,即為第Ⅰ,Ⅲ象限角.由于,解得,故選B.【題目點撥】本題主要考查二倍角公式的應(yīng)用以及象限角的集合應(yīng)用.7、A【解題分析】

根據(jù)正方體性質(zhì),依次證明線面平行和面面平行,根據(jù)直線的平行關(guān)系求異面直線的夾角.【題目詳解】根據(jù)正方體性質(zhì),,所以異面直線與所成的角等于,,,所以不等于45°,所以A選項說法不正確;,四邊形為平行四邊形,,平面,平面,所以平面,所以B選項說法正確;同理可證:平面,是平面內(nèi)兩條相交直線,所以平面平面,所以C選項說法正確;,異面直線與所成的角等于,所以D選項說法正確.故選:A【題目點撥】此題考查線面平行和面面平行的判定,根據(jù)平行關(guān)系求異面直線的夾角,考查空間線線平行和線面平行關(guān)系的掌握8、C【解題分析】

求出點A關(guān)于直線的對稱點,再求解該對稱點與B點的距離,即為所求.【題目詳解】根據(jù)題意,作圖如下:因為點,設(shè)其關(guān)于直線的對稱點為故可得,解得,即故“將軍飲馬”的最短總路程為.故選:C.【題目點撥】本題考查點關(guān)于直線的對稱點的坐標(biāo)的求解,以及兩點之間的距離公式,屬基礎(chǔ)題.9、A【解題分析】

取的中點,連接、,于是得到異面直線與所成的角為,然后計算出的三條邊長,并利用余弦定理計算出,即可得出答案.【題目詳解】如下圖所示,取的中點,連接、,由于、分別為、的中點,則,且,所以,異面直線與所成的角為或其補角,三棱錐是邊長為的正四面體,則、均是邊長為的等邊三角形,為的中點,則,且,同理可得,在中,由余弦定理得,因此,異面直線與所成角的余弦值為,故選A.【題目點撥】本題考查異面直線所成角的計算,利用平移法求異面直線所成角的基本步驟如下:(1)一作:平移直線,找出異面直線所成的角;(2)二證:對異面直線所成的角進行說明;(3)三計算:選擇合適的三角形,并計算出三角形的邊長,利用余弦定理計算所求的角.10、B【解題分析】

設(shè)數(shù)列{an}的公比為q(q≠1),利用保比差數(shù)列函數(shù)的定義,逐項驗證數(shù)列{lnf(an)}為等差數(shù)列,即可得到結(jié)論.【題目詳解】設(shè)數(shù)列{an}的公比為q(q≠1)①由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;②由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;③由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常數(shù),∴數(shù)列{lnf(an)}不為等差數(shù)列,不滿足題意;④由題意,lnf(an)=ln,∴l(xiāng)nf(an+1)﹣lnf(an)=lnlnlnq是常數(shù),∴數(shù)列{lnf(an)}為等差數(shù)列,滿足題意;綜上,為“保比差數(shù)列函數(shù)”的所有序號為①②④故選:B.【題目點撥】本題考查新定義,考查對數(shù)的運算性質(zhì),考查等差數(shù)列的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【題目詳解】解:由題意可知,;同理。故.故答案為:【題目點撥】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.12、【解題分析】試題分析:由題意可得,∴,解得0<q<1考點:等比數(shù)列的性質(zhì)13、【解題分析】

先由題意得到,根據(jù)題意求出的最大值,即可得出結(jié)果.【題目詳解】由題意得到,其中,因為,所以,又不等式對任意實數(shù)x恒成立,所以.故答案【題目點撥】本題主要考查由不等式恒成立求參數(shù)的問題,熟記三角函數(shù)的性質(zhì)即可,屬于??碱}型.14、0.9【解題分析】

先計算,再計算【題目詳解】故答案為0.9【題目點撥】本題考查了互斥事件的概率計算,屬于基礎(chǔ)題型.15、-2【解題分析】

根據(jù)題干中所給的表達式得到數(shù)列的周期性,進而得到結(jié)果.【題目詳解】根據(jù)題干表達式得到可以得數(shù)列具有周期性,周期為3,故得到故得到故答案為:-2.【題目點撥】這個題目考查了求數(shù)列中的某些項,一般方法是求出數(shù)列通項,對于數(shù)列通項不容易求的題目,可以列出數(shù)列的一些項,得到數(shù)列的周期或者一些其它規(guī)律,進而得到數(shù)列中的項.16、【解題分析】

先作出線面角,再利用三角函數(shù)求解即可.【題目詳解】如圖,設(shè)正四棱錐的棱長為1,作在底面的射影,則為與底面所成角,為正方形的中心,,,,故答案為.【題目點撥】本題考查線面角,考查學(xué)生的計算能力,作出線面角是關(guān)鍵.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)利用平面向量的數(shù)量積的運算法則化簡,進而求出向量與的夾角;(Ⅱ)利用,對其化簡,代入數(shù)值,即可求出結(jié)果.【題目詳解】解:(Ⅰ)由得因向量與的夾角為(Ⅱ)【題目點撥】本題考查平面向量的數(shù)量積的應(yīng)用,以及平面向量的夾角以及平面向量的模的求法,考查計算能力.18、(1);(2).【解題分析】

(1)利用三角恒等變換思想得出,利用周期公式可計算出函數(shù)的最小正周期;(2)解不等式,即可得出函數(shù)的單調(diào)遞增區(qū)間.【題目詳解】(1),所以,函數(shù)的最小正周期為;(2)令,可得,因此,函數(shù)的單調(diào)遞增區(qū)間為.【題目點撥】本題考查正弦型函數(shù)周期和單調(diào)區(qū)間的求解,解題的關(guān)鍵在于利用三角函數(shù)解析式化簡,考查計算能力,屬于中等題.19、(1)證明見解析;(2)證明見解析;(3).【解題分析】

(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點到平面的距離.【題目詳解】證明:(1)取中點為,連接分別為的中點,是平行四邊形,平面,平面,∴平面證明:(2)因為平面,所以,而,面PAD,而面,所以,由,為的終點,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點到平面的距離為(也可構(gòu)造三棱錐)【題目點撥】本題主要考查線面平行、面面垂直的判定定理以及等積法求點到面的距離,意在考查學(xué)生的直觀想象、邏輯推理、數(shù)學(xué)運算能力.20、(Ⅰ)或.(Ⅱ)【解題分析】

(Ⅰ)勾股定理求出圓心到直線的距離d,利用d=1以直線的斜率存在、不存在兩種情況進行分類討論;(Ⅱ)設(shè),由求出x、y滿足的關(guān)系式,可得點在圓上,推出圓與圓有公共點,所以,列出不等式求解即可.【題目詳解】(Ⅰ)當(dāng),圓心為,圓的方程為,設(shè)圓心到直線的距離為,則.①若直線的斜率存在,設(shè)直線的方程為,即,,解得,此時的方程為,即.②若直線的斜率不存在,直線的方程為,驗證滿足,符合題意.綜上所述,直線的方程為或.(Ⅱ)設(shè),則,于是由得,即,所以點在圓上,又點在圓上,故圓與圓有公共點,即,于是,解得,因此實數(shù)的取值范圍是.【題目點撥】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,向量的數(shù)量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論